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Common Cancer Drivers

Cell Growth Genes: cell division

Angiogenesis-related Genes: obtain nutrients from blood

Metastasis-related Genes: escape tissue of origin and continue growth

Immune Suppression: remain invisible to immune system surveillance




Tumor Associated Antigens
What is Different about the Tumor?

How to identify a tumor antigen:
Use TIL (tumor infiltrating lymphocytes) which can “recognize” the
tumor to screen a cDNA library:

1.Which cDNA transfected into an unrelated (but HLA-matched) cell
line confers TIL recognition?

2. ldentify gene encoded by plasmid in cDNA library



The Classics: Commonly Targeted Shared Tumor Antigens

1)

2)

3)

4)

o)

MAGE-1, -2 and -3, BAGE and RAGE, which are non-mutated “cancer-testes”
antigens expressed in a variety of tumor cells

lineage specific tumor antigens, like the melanocyte/melanoma lineage antigens
MART-1/Melan-A (MART-1), gp100, gp75, mda-7, tyrosinase and tyrosinase-
related-protein (TRP-1 and -2), or the prostate antigens PSMA and PSA

proteins derived from genes mutated in tumor cells compared to normal cells, like
mutated ras, bcr/abl rearrangement or mutated p53

proteins derived from oncoviruses, like Human Papilloma Virus (HPV) proteins
E6 and E7, HBV, HCV, MCPV

non-mutated proteins with a tumor-selective, increased expression, including
CEA, PSA, Her2/neu and alpha-fetoprotein (AFP), and differentially glycosylated
MUC-1
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Development of antigen-
: . nonspecific vaccines, such as
Timeline of Mycobacterium bovis, bacillus
- Calmette-Guérin and Molecular characterization
r—
cancer vaccine Cryptosporidium parvum of human shared tumour (2010) FDA approval of
1 - antigens'" D¢ (2006 and 2009) the therapeutic vaccine
d evel O p ment (1975) Development of | x::uo:g‘ a:::o(‘)‘mg Si;zuleucel-T"
hybridoma technology'* (1997) Disc of Toll-like ssath ———————————————
rt.'ceptors"?ve‘y (FDA) approval of Development of mutated
the human neocantigens as
Identification of human - papillomavirus personalized therapeutic
tumour antigens with mouse Clinical trials of therapeutic vaccines Gardasil vacclinesit
monoclonal antibodies cancer vaccines! % (Merck) and
J Cervarix |
: | ] (GlaxoSmithKline) Phase /1l trials of shared
Discovery of antitumour (1975) Discovery and Clinical trials of DNA-based as preventive antigen preventive
immunity in mice' 1 ascension of dendritic cells™ vaccines’! cancer vaccines® vaccines'

2010s Ongoing

Phase I/l trials of shared
tumour antigens as
preventive vaccines'”
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genetically modified tumour cells and
T heat shock proteins™ T

Burnet and Thomas
“immunosurveillance
hypothesis’ (REFS 130,131)

Renaissance of
immunosurveillance®

Development of mouse L
tumour models’™ (1980) Discovery of the T cell growth
factor IL-2 (REF. 134)
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Introduction of hepatitis B virus
vaccine for prevention of liver cancer®

O. Finn

Nature Reviews | Immunology



US Immunotherapy Approvals by tumor
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A Primary Efficacy
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In April 2010, the U.S. Food and
Drug Administration
(FDA) approved (sipuleucelT),
an autologous cellular
Immunotherapy, for the treatment of
patients with asymptomatic or
minimally symptomatic metastatic
castration-resistant prostate cancer
(MCRPC)

Cold tumor to hot?
Activated T cell trafficking to tumor
(Fong, 2014)

2020-2021: +/- Anti-CTLA-4
+/- 1L-7



Tumor Antigens
“private” or patient-specific

Normal cell presents self peplides bound
to MHC molecules
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A point mutation in a self protein allows
binding of a new peplide 1o MHC molceules
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A point mutation in a self peplide creates
a new epltope for recognition by T cells
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Mutation: processed and presented? In which MHC? How to identify for each patient?




Three Phases of the Cancer Immuno-editing
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T Cell Exhaustion. Naive cells express mainly BTLA and low levels of TIM3. Effector cells express a wider variety of
inhibitory receptors. The levels of certain inhibitory receptors such as PD1, CTLA-4, LAG3, and TIM3 may peak at the
effector phase. Thereafter, expression differs in chronically stimulated cells (“exhausted cells”) where inhibitory receptors are

relatively maintained, as opposed to memory cells after clearance of an acute infection where inhibitory receptors are down-
modulated.

Front. Immunol., 26 June 2015 Fuertes, Speiser
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C) Components of a cancer vaccine
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Vaccine platforms
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Dendritic Cells at the
center of the immunological :
universe: Vo 27 - el

1. Sampling their environment

2. Sensing pathogens ' Vo 8 o

DENDRITI“C CELL

3. Trafficking from the periphery
to lymph nodes

4. Presenting antigen and
shaping the adaptive immune
response

5. Inhibiting unwanted responses
(tolerance) and activating
needed responses

6. Many different types of DC



DC Vaccines

» 200 DC trials since 1996
»5 current phase lll trials recruiting
»5 current phase Il trials of DC + anti-PD-1

L -‘I \
f :/‘ £
DENDRITIC CELL 7 /]

Dendreon Sipuleucel T: >$80,000/patient; Pittsburgh: $6,500/pt.
Historically, 5-10% CR+PR in late stage patients in some trials, 0% in other trials.

Recent DC vaccine studies (combinations, author conclusions):

1. Kongstad, Svane: Cytotherapy 2017: DC + chemo in 43 prostate cancer pt. (safe and immunogenic)

2. Schreibelt, De Vries: CaRes 2016: 14 stg. IV melanoma pt., CD1c+ isolated blood DC, 16 hour culture, + gp100
and tyrosinase. 4/14 pt. PFS 12-35 mo.

3. Wilgenhof, Neyns: JCO 2016: 39 “adv. Melanoma” pt., mRNA: gp100, tyrosinase, MAGE-A3, MAGE-C2/DC +
ipi. “Encouraging” ORR, 8 CR+7 PR/39.

4. Greene, Peoples: Cll 2016: DC/tumor fusions + low dose IL-2 in 25 melanoma pt. Benefit for some?

5. Carreno, Linette: Science 2015: 3 stg. lll melanoma pt., DC+ neoAg peptides, some + immune responses
(proof of principle).

6. Chodon, Ribas: CCR 2014: DC + MART-1 ACT, 14 melanoma pt., objective responses, needs improvement for
durability

7. Ribas, Gomez-Navarro: CCR 2009: DC + anti-CTLA-4, 16 melanoma pt., combo not better.




Why DC Vaccines?

 Originally considered a stand-alone therapeutic approach to promote
regression of tumors.

 After being proven “safe and immunogenic” over years, testing in earlier
stage patients and in the prevention setting in high risk patients is being
pursued.

« With the success of checkpoint blockade and data supporting the need
for a pre-existing immune response in the tumor for checkpoint
response, vaccines may be critical to promote antitumor immunity in
those who lack it spontaneously.
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MART-1 loaded-DC Clinical Trials

7/97- 4/01; Clin.Ca.Res., 3/03
5/01- 4/02: J. Immunother., 9/04
3/02- 3/04: J. Immunother., 4/08

PBMC
GM-CSF :
LA PBMC: ™
MART-15; 35 - ELISPOT Which
\ - MHC Tetramer >~ correlates
DC - '
— ICS N W!th
X 3 - cytotoxicity ) clinical
AdVMART1 response?

Peptide/DC Phase I: 10°, 10°, 107 DC/injection
I.v. vs. 1.d. at each dose (18 pt.)

Peptide/DC Phase 1l: 107 DCl/injection, i.d. (10 pt.)
AdV/DC Phase I/1l: 107 DClinjection, i.d. (23 pt.) PI: J.S. Economou
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Summary of Completed MART-1-based
—_— Melanoma Clinical Trials

Phase | MART-1,, 55 pep/DC.
10°, 108, 107 DClinjection; routes: i.v. vs. i.d. (18 pt., stg. llI-1V)
13/16 immune responses by MHC tetramer; and 13/15 by IFNy ELISPOT
10 pt. w/disease: 2 SD (4, 12 mo.), 1 CR
8 pt. NED: 5/8 remained NED (18+ to 27+ mo.)

Phase Il MART-1,, 55 pep/DC:
107 DClinjection, i.d. (10 pt., stg. lI-1V)
9/10 MART-1 immune responses by MHC tetramer and/or IFNy ELISPOT
5 pt. w/disease: 1 MR, 1 SD (6 mo.), 1 CR (+ ipi).
4/5 NED remained NED (20+ to 27+ mo.)

AdVMART1/DC:

3/02-3/04 (23 enrolled); 14 received all 3 vaccines (all metastatic)
12/13 MART-1 immune responses by IFNy ELISPOT; 9/14 MHC Tetramer+
1 “unevaluable” (54+ mo.),

il II: I 4 SD (27, 33, 36, 42 mo.), 1 became resectable/NED (56+ mo.)



Determinant/Epitope/Antigen Spreading

@ Tumor
@ a © LX)
Vaccine-induced, antigens
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T cells o8o§0
- O @
Tumor lysis
Endogenous antigen release

I Antigen cross presentation
. by endogenous APC.
ﬁ I T cell activation against waves of other

antigenic specificities

Ranieri ‘00; Disis '02; Butterfield ‘03; Ribas ‘04; Wierecky '06, Butterfield '08
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What have
vaccines been
shown to do?
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Nature Reviews | Immunology

Z. Hu, P. Ott, C. Wu Nat
Rev Immunol 2018
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More diversity in the blood = better outcome
Expansion of good clones in the tumor = better outcome

Science. 2015 May 15 Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of
melanoma neoantigen-specific T cells.

Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J, Petti AA, Ly A, Lie WR, Hildebrand WH, Mardis ER, Linette GP
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The antigen matters: Alpha Fetoprotein (AFP)

1. 1.8 kb cDNA, 15 exons/14 introns over 22 kb of genomic DNA, chromosome 4, 18aa leader
sequence for secretion.

2. Transcriptionally regulated, cell-type specific promoter and enhancer, silencers utilized after birth.

3. 609 aa glycoprotein (591aa mature size), synthesized in fetal liver and yolk sac, major serum
protein before birth.

4. Possible roles in serum component transport (esp. fatty acids), binds hormones including
estrogen, possible breast cancer prevention role, binds TNFa, possible
Immunoregulatory role.

5. Serum levels in fetus: maximum at 10-13 weeks (3 mg/ml), decreases to 30-100 ug/ml at birth,
adult levels 1-3 ng/ml.

6. 50% to 80% HCC express AFP (serum AFP up to 1 mg/ml).

7. 14 HLA-A2.1-restricted peptides were characterized (4 immuno-dominant, 10 sub-dominant) and
the 4 immunodominant were found to be immunogenic in vivo, in HCC pt. with high serum AFP.

(Cancer Res. '99, Molec. Immunol. ’00, J. Immunol. ’01, Clin. Cancer Res. '03)



= AFEP Based Immunotherapy Clinical Trials for HCC
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1. Peptides/Montanide (Clin. Cancer Res. 2003)
2. Peptides/DC (Clin. Cancer Res. 2006)
3. DNA prime/AdV boost i.m. (JTM, 2015)
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Summary of Completed AFP-based Clinical Trials

AFP peptides/Montanide:
6 patients, Stage IVa, IVDb,
Four AFP peptides in Montanide ISA adjuvant
100 ug, 500 ug each peptide, 3 intradermal injections (skin toxicity only)
6/6 immune responses by MHC tetramer and/or IFNy ELISPOT
No objective clinical responses or AFP decreases, OS = 2-17 months

AFP peptides/DC.:
10 patients, stage IlI-1Vb
Four AFP peptides pulsed onto autologous GM-CSF/IL-4 DC
3 injections, intradermal, no toxicities
8/10 immune responses by MHC tetramer and/or IFN y ELISPOT
No objective clinical responses, 2 serum AFP decreases, OS = 2-35 months

AFP DNA prime/AFPAdV boost:
2 patients, stage |l
AFP + GM-CSF plasmids x 3, then AdVhAFP x 1; monthly i.m.
Pt. #1 Minimal AFP-specific T cell immunity and low anti-AdV neutralizing antibodies.
9 mo. AFP positive recurrence.
Pt. #2 Strong AFP-specific T cell immunity and + anti-AdV neutralizing antibodies.
18 mo. AFP-negative suspected recurrence.



Monocytes cultured +/- normal AFP or tumor-derived AFP
during DC culture: antigen matters

'~ = RS, =
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AFP alters DC phenotype toian immature phenotype that cannot be reversed by maturation,
AFP inhibits DC metabolic function and T cell stimulatory capability (Pardee 2014, Santos 2019) il I I: I



Other effective platforms: Synthetic and Viral Vaccines

1. TVEC (Amgen) *FDA approved 2015
— Oncolytic virus: HSV-1 + GM-CSF transgene
— Metastatic melanoma, 26% response rate (vs. 6% in control arm)

2. ISA101 (Immune System Activation)
— HPV16 Synthetic long peptide (SLP, 24-32mer) in Montanide
— Cervical cancer
— Appears to synergize with cisplatin chemotherapy

3. STINGVAX (Aduro)

—  Cyclic dinucleotides (CDN) are recognized by Stimulator of Interferon Genes (STING): TLR-
like mechanism

— STINGVAX = CDN with a GM-CSF secreting tumor cell vaccine

4. Prostvac

— Vaccinia (prime) and fowlpox (boost) viruses encoding PSA and three costimulatory
molecules

— Overall survival in advanced prostate cancer increased by 9 months
Presented at SITC annual meeting 2013



Selective viral replication in Tumor cells rupture for an Systemic tumor-specific Death of distant cancer cells

tumor tissue oncolytic effect immune response
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Talimogene laherparepvec proposed mechanism of action. cmv cytomegalovirus, GM-CSF
granulocyte-macrophage colony-stimulating factor, hGM-CSF human GM-CSF, pA poly-adenosine, TDA tumor-derived antigen

Cancer Immunol Immunother. 2017; 66(10): 1249-1264.
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Figure 1: Mechanisms of action of oncolytic viruses. DAF — Decay Accelerating Factor, GM-CSF — Granulocyte Macrophage-Colony Stimulating
Factor, HSV — Herpes Simplex Virus, hTERT — Human Telomerase, ICAM-1 — Intercellular Adhesion Molecule-1, ICP — Infectious Cell Protein, INF-3 —
Interferon beta, NDV — Newcastle Disease Virus, VSV — Vesicular Stomatitis Virus.



Tumor Mutations

Malignant transformation of cells depends on accumulation of
DNA damage.

The immune system frequently responds to the neoantigens that
arise as a consequence of this DNA damage.

Recognition of neoantigens appears an important driver of the

clinical activity of both T cell checkpoint blockade and adoptive T
cell therapy as cancer iImmunotherapies.
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A dendritic cell vaccine increases the breadth and diversity of
melanoma neoantigen-specific T cells

Beatriz M. Carreno’’, Vincent Magrini, Michelle Becker-Hapak', Saghar Kaabinejadian®,
Jasreet Hundal” - B ' )

R. Mardis?, and LETTER

doi:10.1038/nature23003

Personalized RNA mutanome vaccines mobilize

poly spec:1f1c therapeutlc immunity agamst cancer

nl Marthine Millaxl Difen Dhilinn Plalzal Darea Cimannl AMaerin 12 Tn 1,2

doi:10.1038/nature22991

':hl‘lbtoph He lﬂt‘l

v o AN immunogenic personal neoantigen vaccine for
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*Neoantigens have emerged as targets of effective tumor-directed T cell responses.
Increased neoantigen load is associated with improved patient outcomes.

*Three clinical trials of neoantigen-based vaccines in patients with melanoma, using
dendritic cells loaded with short peptides, long peptides or RNA, have shown the
safety, feasibility and robust immunogenicity of this approach.

*A crucial aspect of a vaccine targeting neoantigens is the selection of epitopes that
can be presented in vivo by tumor or antigen-presenting cells. HLA-binding prediction,
high-resolution mass spectrometry and understanding of antigen processing are
Important research areas for further discovery.

*Optimal neoantigen delivery — use of the most effective formulations, immune
adjuvants, delivery vehicles and dosing — in combination with complementary
therapies will be crucial for maximum therapeutic effectiveness.
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_ Neoepitope pipelines are becoming more common,
lverse and complex
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TESLA Publication
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Key Parameters of Tumor Epitope Immunogenicity
Revealed Through a Consortium Approach
Improve Neoantigen Prediction
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TESLA Conclusions

 Largest ever Immunogenomic resource of patient tumor
sequencing with matched MHC | tumor epitope validation.

Data resource in active use in academia and industry to improve
prediction.

5 traits determine epitope immunogenicity in an integrated
model.
Peptides that have strong MHC binding affinity and long half-

Ife, are expressed highly, and have either low agretopicity or
nigh foreignness.
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Generation of a personal, multi-
peptide neoantigen vaccine for
patients with high-risk
melanoma

A. Somatic mutations were identified by
WES of melanoma and germline DNA
and their expression confirmed by tumor
RNA-sequencing. Immunizing peptides
were selected based on HLA binding
predictions. Each patient received up to
20 long peptides in 4 pools.

B. Clinical event timeline for 6 vaccinated
patients from surgery until time of data
cutoff (36 months from study initiation).

P.A.Ott, ...C. J. Wu, An Immunogenic Personal
Neoantigen Vaccine for Melanoma Patients,
Nature 2017



How can we improve?




Greater success from new formulations

FixVac (BNT111)-an intravenously administered liposomal RNA vaccine, which targets four non-
mutated, tumour-associated antigens that are prevalent in melanoma (NY-ESO-1, Tyrosinase, MAGE-
A3, TPTE).

...melanoma FixVac, alone or in combination with blockade of the checkpoint inhibitor PD1, mediates
durable objective responses in checkpoint-inhibitor experienced patients with unresectable
melanoma (vaccine alone: 3 PR/7 SD/25; + vaccine +aPD-1: 6/17 PR)

Clinical responses are accompanied by the induction of strong CD4* and CD8* T cell immunity against
the vaccine antigens.

The antigen-specific cytotoxic T-cell responses in some responders reach magnitudes typically
reported for adoptive T-cell therapy and are durable. Sahin et al., Nature, 3 Sept.2020

Vaccine-induced T cell infiltration and neo-epitope-specific killing of autologous tumour cells were
shown in post-vaccination resected metastases (Sahin Nature 2017)

Optimized RNA + nanoparticulate X8
4 Ag, Class I/l liposomes injections

s

MELANOMA

Virtual meeting

bridge 207 December 2 - 4%, 2021

’lig
F]
H
[ 20



Neoantigen vaccine generates intratumoral T cell
responses in phase |b glioblastoma trial

e Using single-cell T cell receptor analysis, we provide evidence that
neoantigen-specific T cells from the peripheral blood can migrate
into an intracranial glioblastoma tumour

* Neoantigen-targeting synthetic long peptide vaccines thus have the
potential to favourably alter the immune milieu of glioblastoma

e GBM is a cold tumor, not highly mutated

e N=8, best responses in n=2 w/o dexamethasone

Keskin, ...\Wu, Reardon Nature, Jan 2019
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The dawn of vaccines for cancer prevention

Olivera J. Finn, Ph.D., Univ. Pittsburgh
Nature Reviews Immunology volume 18, pages 183-194 (2018)

* Developments in imaging and other screening methods have made possible the
detection of pre-malignant lesions.

*Therapeutic cancer vaccines based on viral antigens for the control of viral cancers
have not shown effectiveness in advanced disease but have been highly effective at
clearing pre-malignant lesions.

*\Vaccines based on nonviral antigens might be similarly more effective against pre-
malignant lesions of nonviral cancers, and the few completed or ongoing phase |
and Il clinical trials of preventive cancer vaccines have already shown clinical
efficacy.
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Can cancer
vaccines work to

eradicate
established
disease? Yes!

How can we do
better than O-
10% RR?
Platform?
Antigen?
Dose?
Schedule?
Prevention?
Combination?
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