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How does the tumor microenvironment’s metabolic 
landscape affect immunotherapy response?

• The tumor microenvironment engages in some very 
immunosuppressive functions

• Altering stromal cell function to support tumor growth

• Changing angiogenesis patterns

• Providing chronic antigen stimulation

• Recruitment of immunosuppressive cell types

• However, a common phenotype of cancer is that it is hungry

• The tumor microenvironment, driven by the metabolic 
derangement of tumor cells, generates a distinct metabolic 
landscape, creating both a sink for essential nutrients as well 
as a buildup of toxic byproducts

• Tumors increase oxygen consumption, which creates local zones of 
hypoxia and production of high concentrations of reactive oxygen 
species

• Tumors also become highly glycolytic, creating both a 
hypoglycemic interstitia but also generating high concentrations of 
lactic acid

• A tumor cell’s ‘appetite’ may be variable in the patient 
population!

Glucose uptake
Hypoxia



Tumor cell (oxidative) metabolism is associated 
with immunotherapy response

• We performed metabolic profiling of melanoma patient tumor cells directly from 
biopsies prior to anti-PD1

• Tumor cell metabolism was highly variable in IO-naïve patients

• Patients with highly oxidative tumor cells were more likely to fail anti-PD1 therapy

• Immune activation and function are extremely energetically demanding!
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What is the metabolic environment in cancer?

Watson and Delgoffe, JCI 2022



How can you isolate how metabolism 
specifically affects anti-cancer immunity?

• Not only can metabolism act on multiple phases of the immune 
response, but there are also dozens of other signals T cells 
endure simultaneously within the tumor microenvironment

• Oncogenic signals

• Inflammatory vs suppressive cytokines

• Physical barriers

• Immunologic cell-surface signals

• Can we ask how the specific metabolism of the tumor 
microenvironment acts upon different phases of T cell 
immunity?



Tumor interstitial fluid: the milieu of the tumor microenvironment

TIFM
(Tumor Interstitial Fluid

Media)

Quantitative

metabolomics

Plasma

TIFTumor

Spin

• What do immune cells see metabolically in cancer?

• Enter Alex Muir
• Metabolic regulation of cancer progression, notably in KPC mice –

KrasG12Dp53f/fPdx1Cre

• low response to immune checkpoint blockade

• Highly metabolically deregulated

• Developed a cost-effective means to generate metabolite libraries for 

quantitation of metabolomics experiments

• He published a sweeping metabolomic characterization of tumor interstitial 

fluid (Sullivan et al, eLife 2019)

(Sullivan et al. eLife

2019;8:e44235 )

Alex Muir Chufan Cai
University of Chicago



How do T cells respond acutely to TIF media?
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Culture in the TIFM arrests proliferation
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What’s missing in TIF media that T cells need?  
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Arginine supplementation of TIFM restores T cell proliferation
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Arginine supplementation of TIFM fails to rescue cytokine production
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It’s not always about what’s missing…

• The immunometabolic ‘party line’ 
currently is all about a land grab: 
tumor cells and T cells are 
competing for the same nutrients

• A lesser appreciated aspect of 
the tumor microenvironment is 
the build-up of metabolic 
byproducts – as tumors are 
poorly perfused, these potentially 
toxic wastes can also act as 
dominant immunoregulatory 
molecules 

• We are learning these 
metabolites may be the true 
culprit in immunoregulation within 
the TME and beyond…

Tumor cells

oxygen

ROS

glucose

lactate

tryptophan
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Are there immunosuppressive metabolites present in TIF which cause
dysfunction?



Phosphoethanolamine: a novel oncometabolite?

• pEtn is a commonly upregulated metabolite in 
TIFs

• pEtn is the head group of 
phosphatidylethanolamine, a membrane 
phospholipid

• PE is the second most abundant phospholipid in 
mammalian cells

• PC/PE in mice (3:1)
• PC/PE in flies (1:3)

• pEtn contributes to PE synthesis through the 
Kennedy pathway

Kennedy Pathway

（JBC REVIEWS| VOLUME 295, ISSUE 51）

Phosphatidylethanolamine(PE)

pEtn

https://www.jbc.org/issue/S0021-9258(17)X5024-2


Phosphoethanolamine (pEtn) supports T cell proliferation

R10
Day2

TIFM

OT-I cells activated 
with SIINFEKL for 24h

R10+ R10+

Enriched 
metabolite

1 2 3 4 5 6 7
0

1000

2000

3000

4000

PEtn

Day Post Activation

F
o

ld
 E

x
p

a
n

s
io

n

R10

R10+PEtn

TIFM

R10 TIFMR10+PEtn
0

20

40

60

80

100

PD-1

P
D

-1
+

(%
)

***
**R10+PEtnR10 TIFM

P
D
-1

CD8

37.6 71.9 42.8

R10+PEtn



Despite stimulating proliferation, pEtn severely compromises CD8 T cell
cytokine production
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Exposure to pEtn for one day is enough to cause dysfunction
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Is the effect driven by pEtn or the Kennedy pathway entirely?

• Choline and phosphocholine in 
the choline-arm of Kennedy 
pathway are also enriched in the 
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Phosphotidylcholine (PC) precursors do not cause CD8 T cell dysfunction

• Repeated experiments 
with RPMI media 
cultured with choline or 
phosphocholine

• The PC arm of the 
Kennedy pathway does 
not induce T cell 
dysfunction
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Both precursor and product of pEtn metabolism can
induce T cell dysfunction

• Our data highlight the importance of the 

ethanolamine arm of the Kennedy pathway

• While Etn and CDP-Etn are not enriched in 

TIF, we asked if a similar treatment regimen 

would induce T cell dysfunction

RPMI                    pEtn Etn

RPMI                    pEtn CDP-Etn

IFNγ
T

N
F

54.8 31.7 32.3

52.9 33.9 31.2

Thus, it is not pEtn itself but rather flux through the ethanolamine arm 

of the Kennedy pathway that induces T cell dysfunction



RNAseq identifies some 
interesting immune or metabolic 
hits, but no smoking gun

• Performed RNAseq on RPMI or 
pEtn-expanded T cells

• While these cells had some hints of 
a dysfunctional status (Pdcd1, Lag3, 
Tigit), the data were certainly not 
consistent with exhaustion or anergy

• No strong (any?) hits with GSEA/GO 
analysis

• We had to go beyond 
transcriptomes to understand this 
cell-intrinsic immune regulation



Phosphoethanolamine supplementation dramatically shifts the 
PE/PC balance of T cells

Stacy Wendell
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pEtn treatment shifts the entire metabolome of T 
cells

• Global metabolomics profiling 
revealed pEtn supplementation 
drove massive ethanolamine flux 
into membrane and second 
messenger phospholipids

• The result was a striking 
reprogramming of the cells’ 
carbohydrate metabolism, and 
suppression of mitochondrial 
biogenesis, which we’ve 
previously associated with T cell 
dysfunction

pEtn

RPMI

~3600 metabolites



pEtn

Glycerolphosphoethanolamine



How much of the “TIFM” phenotype is pEtn?

• Formulated TIFM 
without pEtn

• T cells cultured in TIFM 
still possessed a 
proliferative defect

• However, T cells 
cultured in TIFM retain 
the cytokine production 
of control cells

• Not a complete rescue, 
so lots left to do!
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The dysfunction induced by pEtn culture is at the level of TCR and/or CD28 
signaling

• CD8 T cells cultured in R10+PEtn have lower cytokine 
production when restimulated with α-CD3/α-CD28

• However, pEtn-cultured T cells have no cytokine 
defects when activated chemically with PMA+ionomycin

αCD3/αCD28

or

PMA /Ionomycin
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Do pEtn treated cells have defects in TCR signaling?

• Restimulated RPMI or pEtn
expanded cells short-term
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How does pEtn flux reduce distal but not 
proximal TCR signaling?

Heightened flux through the Kennedy pathway depletes DAG,

a critical second messenger!
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Restoration of DAG can rescue pEtn-
induced T cell dysfunction
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Conclusions

• Media based on tumor interstitial fluid (TIF) allows for a direct view of 
tumor microenvironment metabolism’s role on T cell function and fate

• TIFM induces persistent, heritable dysfunction in CD8+ T cells

• TIFM confirmed the importance of arginine in T cell proliferation, but 
not T cell dysfunction

• TIFM identified a novel oncometabolite, phosphoethanolamine, 
which drives flux through the ethanolamine arm of the Kennedy 
pathway, producing PEs

• pEtn treatment paradoxically drives T cell proliferation but inhibits 
cytokine production

• pEtn induces a distinct form of T cell dysfunction induced through 
amplified (pathologic?) metabolic flux that depletes critical second 
messengers, like DAG
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