

Phase 1 Dose Escalation Study of PRS-343, a HER2/4-1BB Bispecific Molecule, in Patients with HER2+ Malignancies

Sarina Piha-Paul¹, Johanna Bendell², Anthony Tolcher³, Sara Hurvitz⁴, Amita Patnaik⁵, Anuradha Krishnamurthy⁶, Rachna Shroff⁷, Paula Pohlmann⁸, Noah Hahn⁹, Markus Zettl¹⁰, Jian Mei¹⁰, Kayti Aviano¹⁰, Manuela Duerr¹⁰, Rushdia Yusuf¹⁰, Louis A Matis¹⁰, Shane Olwill¹⁰, Ingmar Bruns¹⁰, Geoffrey Ku¹¹

¹The University of Texas MD Anderson Cancer Center, Texas, USA ²Sarah Cannon Research Institute, LLC, Tennessee, USA ³NEXT Oncology, Texas, USA ⁴University of California Los Angeles Jonsson Comprehensive Cancer Center, California, USA ⁵South Texas Accelerated Research Therapeutics, Texas, USA
⁶University of Pittsburgh Medical Center, Pennsylvania, USA
⁷University of Arizona Cancer Center, Arizona, USA
⁸Georgetown University Hospital, Washington DC, USA
⁹Sydney Kimmel Cancer Center at Johns Hopkins, Maryland, USA

¹⁰Pieris Pharmaceuticals, Inc., Massachusetts, USA ¹¹Memorial Sloan Kettering Cancer Center, New York, USA

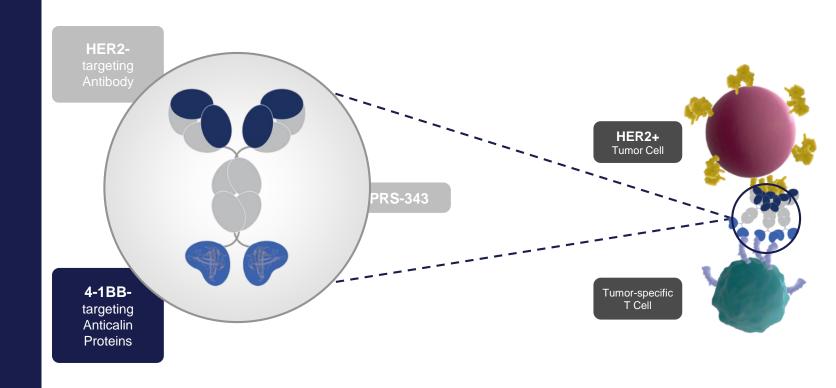
Disclosures

Geoffrey Ku

Reports relationships with the following:

- Arog Pharmaceuticals research support
- AstraZeneca research support, consulting
- Bristol-Myers Squibb research support, consulting
- Daiichi Sankyo research support
- Eli Lilly consulting
- Merck research support, consulting
- Pieris Pharmaceuticals research support, consulting
- Zymeworks research support

Study sponsored by Pieris Pharmaceuticals


PRS-343: A HER2 4-1BB Bispecific

#SITC2019

HER2-targeting moiety of the drug localizes to the tumor microenvironment and facilitates 4-1BB cross-linking

4-1BB cross-linking ameliorates T-cell exhaustion and is critical for T-cell expansion

Study Design

#SITC2019

Current Enrollment

Dose Level	No. Patients	Dose (mg/kg)
1	1	0.0005 (Q3W)
2	1	0.0015
3	1	0.005
4	2	0.015
5	2	0.05
6	5	0.15
7	7	0.5
8	6	1
9	6	2.5
10	9	5
11	7	8
11b	6	8 (Q2W)
Total	53	

Primary Objectives

- Characterize safety profile
- Identify MTD or RP2D

Secondary Objectives

- Characterize PK profile
- Investigate dosing schedule
- Assess potential immunogenicity and PD effects
- Investigate efficacy

Active Sche schedules Q3W

Schedule 1: Q3W dosing on Day 1 Schedule 2 : Q2W dosing on Days 1, 15

Data cut-off: 23-Oct-19 for subjects up to Cohort 11b; additional cohorts enrolling

Inclusion Criteria

- Diagnosis of HER2+ advanced/metastatic solid tumor malignancy that has progressed on standard therapy or for which no standard therapy is available
- HER2+ solid tumors documented by ASCO, CAP or institutional guidelines
- Patients with breast, gastric and GEJ cancer must have received at least one prior HER2-targeted therapy for advanced / metastatic disease
- Measurable disease per RECIST v1.1
- ECOG 0 or 1
- Adequate liver, renal, cardiac and bone marrow function

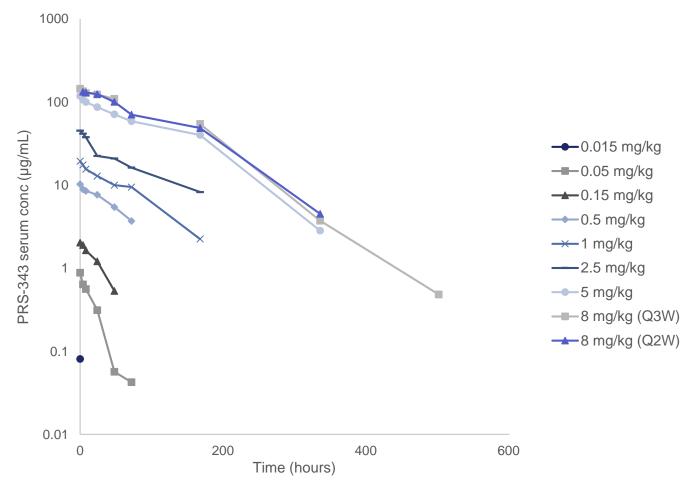
Exclusion Criteria

- Ejection fraction below the lower limit of normal with trastuzumab and/ or pertuzumab
- Systemic steroid therapy or any other form of immunosuppressive therapy within seven days prior to registration
- Known, symptomatic, unstable or progressing CNS primary malignancies
- Radiation therapy within 21 days prior to registration (limited field radiation to non-visceral structures is allowed, e.g., limb bone metastasis)

Baseline Characteristics All Subjects (n = 53)

#SITC2019

Characteristic	n (%)
Age, Median (range)	61 (29–92)
Gender	
F	33 (62%)
Μ	20 (38%)
ECOG PS	
0	12 (23%)
1	41 (77%)
Prior Therapy Lines	
1	6 (11%)
2	5 (9%)
3	11 (21%)
4	10 (19%)
5+	21 (40%)
Median no. of anti-HER2 Treatments	
Breast	4
Gastric	2


Primary Cancer Type	n (%)
Gastroesophageal	19 (36%)
Breast	14 (26%)
Gynecological	6 (11%)
Colorectal	5 (9%)
Gallbladder/ Biliary	4 (8%)
Bladder	2 (4%)
Pancreatic	1 (2%)
Other – Salivary Duct	1 (2%)
Other – Melanoma	1 (2%)

Data cut-off: 23-Oct-19

PRS-343 Clinical Pharmacology

Preliminary PRS-343 Pharmacology Profile

- Preliminary PK: Mean terminal half-life of PRS-343 is approximately five days
- 27.8% of patients are ADA+ with titers above 1:150 in cohorts covering active dose range (≥2.5 mg/kg)

Note: PRS-343 concentrations are below limit of quantification for dose levels < 0.015 mg/kg

34th Annual Meeting & Pre-Conference Programs

#SITC2019

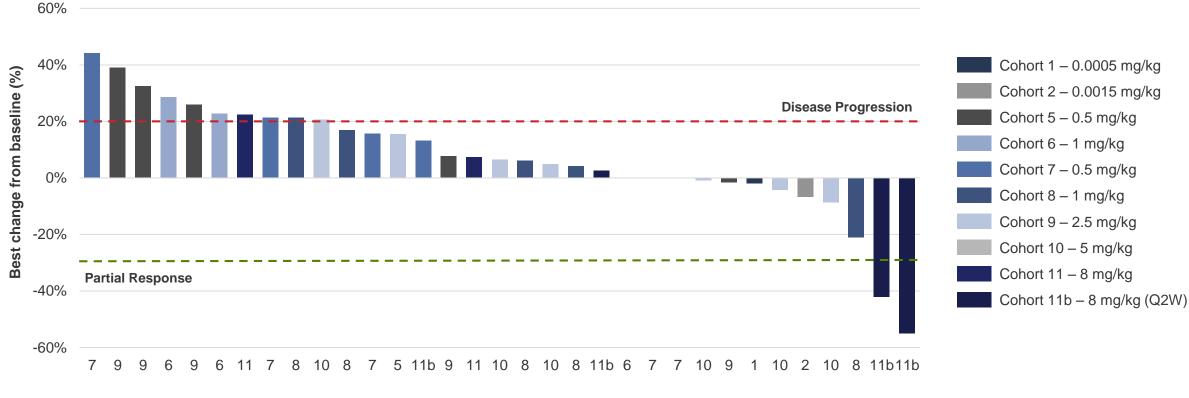
Treatment-Related Adverse Events All Subjects

Occurred in ≥ 1 Patient	n = 111 n (%) % Grade 3	
Infusion Related Reaction	10 (9%)	2 (2%)
Fatigue	10 (9%)	1 (1%)
Chills	7 (6%)	0
Flushing	7 (6%)	3 (3%)
Nausea	7 (6%)	0
Diarrhea	7 (6%)	0
Vomiting	6 (5%)	0
Non-Cardiac Chest Pain	5 (4%)	1 (1%)

No Grade 4 or 5 Treatment-Related AEs

Summary of Responses at Active Dose Range of PRS-343

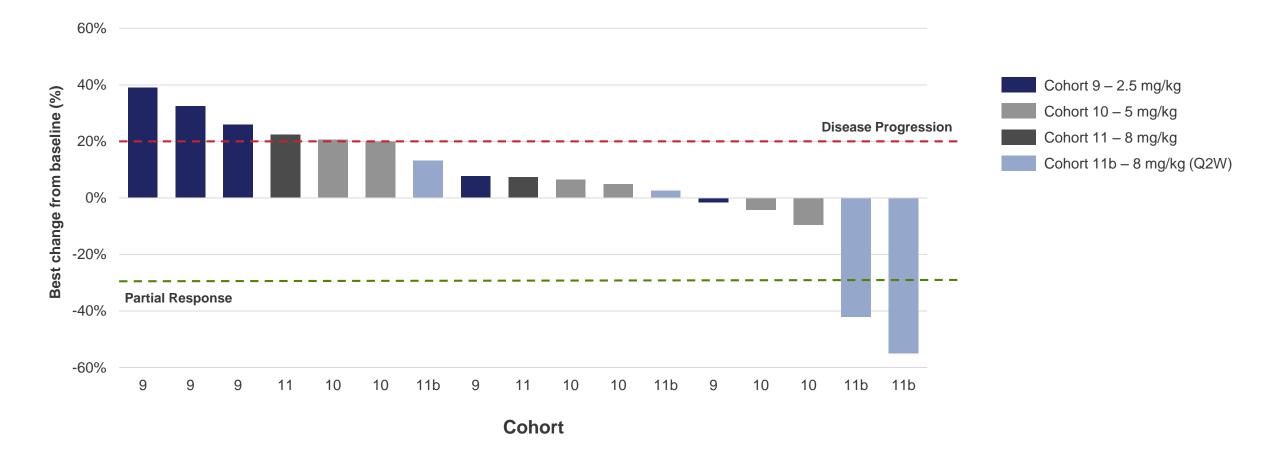
#SITC2019


Based on clinical data, serum concentration of > 20 µg/ml defines active dose range (beginning at Cohort 9)

Cohort	11b	11	10	9	Total
Best Response	8 mg/kg, Q2W	8 mg/kg, Q3W	5 mg/kg, Q3W	2.5 mg/kg, Q3W	Ισται
Response Evaluable Patients	5	4	4	5	18
PR	2	-	-	-	2
SD	3	2	1	2	8
PD	-	2	3	3	8
ORR	40%	0%	0%	0%	11%
DCR	100%	50%	25%	40%	55%

Best Response in Target Lesions Monotherapy Study Cohorts 1-11b

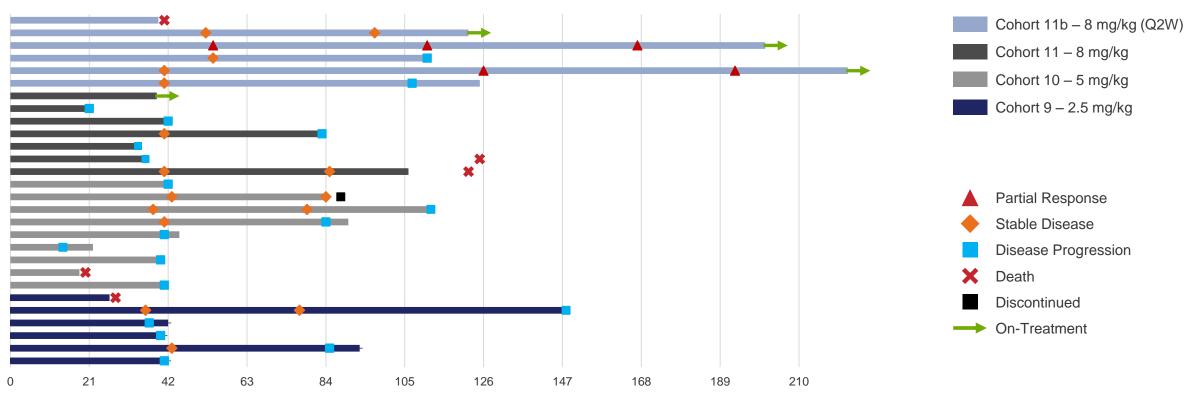
Cohort



Best Response in Target Lesions Monotherapy Study Cohorts 9-11b

#SITC2

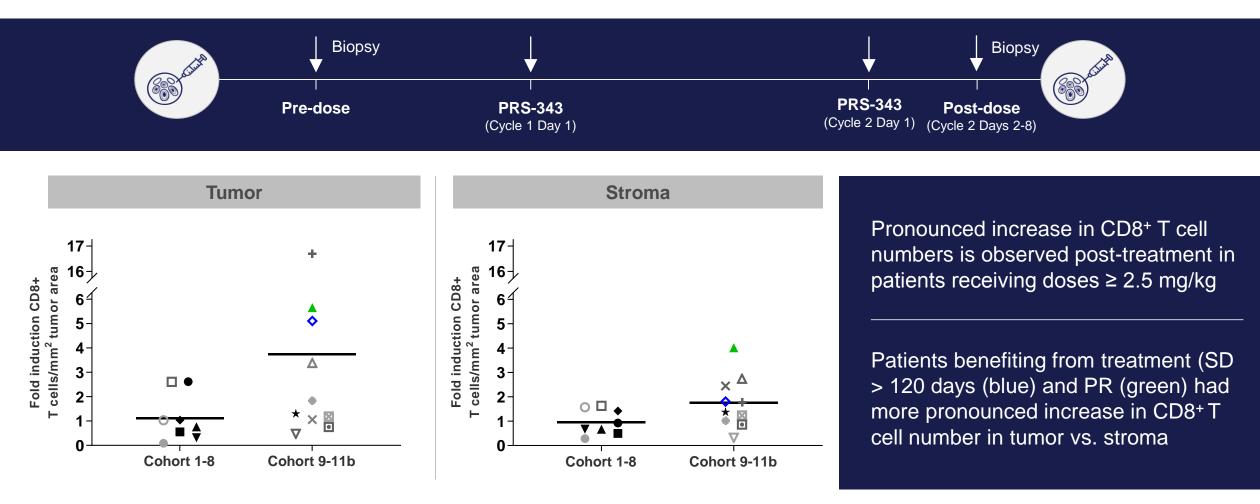
010


Average Time on Treatment with PRS-343 Significantly Increases in Cohort 11b (8 mg/kg Q2W)

#SITC2019

Duration (Days)

Number of Subjects = 28



Increased CD8⁺ T Cell Numbers in Tumor Biopsies Post-Treatment

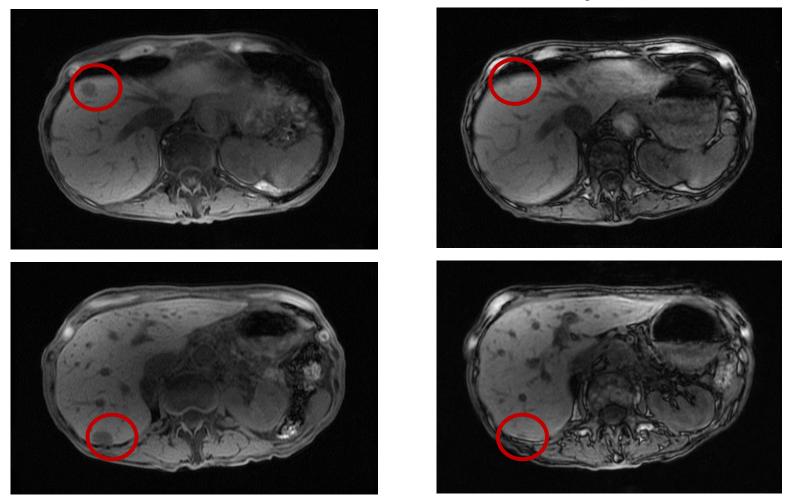
Gastric Cancer Patient with Confirmed PR

Patient Profile, Treatment History and RECIST

#SITC2019

 Patient Profile Cohort 11b 8 mg/kg every two weeks 	Oncology Treatment History	Duration	Best Response
 80-year old woman; initial diagnosis on June 2017 Stage IV gastric adenocarcinoma Metastases to liver, lymph node and adrenal glands HER2 IHC 3+; PD-L1 positive (CPS=3) 	Trastuzumab, Pembrolizumab + Capecitabine/oxaliplatin	July 2017 – June 2018	Stable Disease
 NGS: ERBB2 amplification, TP53 mutation, alteration of CDK12 and SF3B1 	Nivolumab with IDO1 inhibitor (investigational drug)	Aug 2018 – Jan 2019	Stable Disease

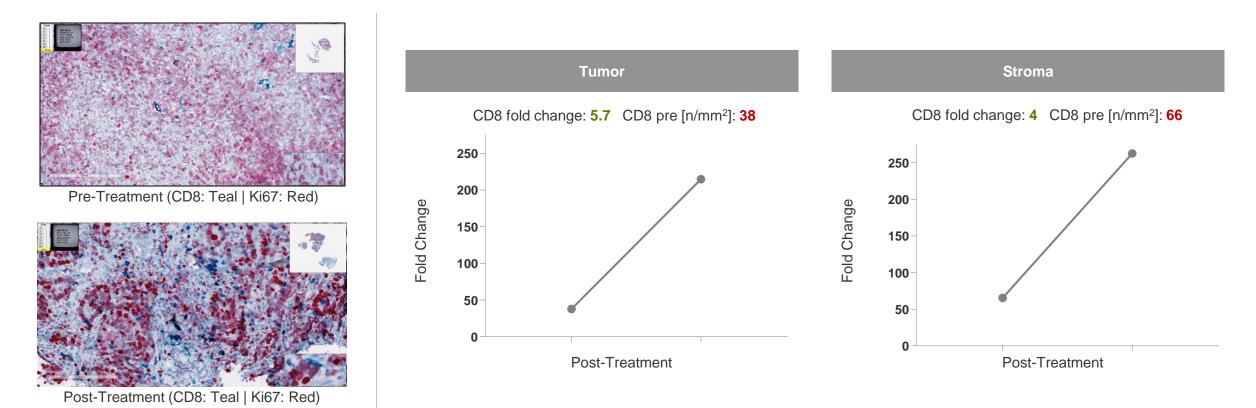
Lesions Lesion Site	Locian Site	Lesion Size (mm)				
	Lesion Site	Baseline	C2 Post-treatment	C3 Post-treatment	C4 Post-treatment	C6 Post-treatment
Target 1	Liver	14	12	10	9	9
Target 2	Liver	20	16	10	8	8
Target 3	Pancreas	19	16	14	14	14
% Change from Baseline			-17%	-36%	-42%	-42%


PR, partial response; HER2, human epidermal growth factor receptor 2; PD-L1, Programmed Death Ligand 1; CPS, combined positive score; NGS, next-generation sequencing

Gastric Cancer Patient with Confirmed Partial Response

Baseline

Cycle 4



CD8+ T Cell Numbers Increase Post-Treatment in Responding Gastric Cancer Patient

CD8+ T cell numbers increase post-treatment. This is more pronounced in tumor tissue, consistent with the predicted MoA of PRS-343.

Conclusions: PRS-343 as Monotherapy

Well-tolerated, with a good safety profile in all doses and schedules tested

Demonstrated anti-tumor activity in heavily pre-treated patient population across multiple tumor types; treatment history indicative of 4-1BB-driven mechanism-of-action

Showed a clear increase in CD8⁺ T cell numbers and proliferative index in the tumor microenvironment of responders

Future studies are planned for continued development in defined HER2+ indications

Acknowledgements

- Patients, their families and caregivers
- Investigators, as well as their site personnel
 - The University of Texas MD Anderson Cancer Center S. Piha-Paul, B. Bruggman
 - Sarah Cannon Research Institute, LLC J. Bendell, J. Costin
 - NEXT Oncology A. Tolcher, K. Dotson
 - University of California Los Angeles Jonsson Comprehensive Cancer Center S. Hurvitz, M. Rocha, R. Rubin
 - South Texas Accelerated Research Therapeutics A. Patnaik, K. Rivas
 - University of Pittsburgh Medical Center A. Krishnamurthy, B. Foster, A. Blasko
 - University of Arizona Cancer Center R. Shroff, D. Pennington
 - Georgetown University Hospital P. Pohlmann, S. Wagner
 - Sydney Kimmel Cancer Center at Johns Hopkins N. Hahn, E. Lee
 - Memorial Sloan Kettering Cancer Center G. Ku, T. Shrivastav, P. Collins

