

Immunotherapy for the Treatment of Genitourinary Malignancies

Michael B. Atkins, MD

Deputy Director, Georgetown Lombardi Comprehensive Cancer Center William M Scholl Professor and Vice Chair Department of Oncology Georgetown University Medical Center

Michael B. Atkins: Disclosures

- Consulting Fees:Amgen, Aveo, BMS, Eisai, Exelixis, Genentech, Iovance, Merck, Novartis, Pfizer, Roche, Pyxis, Leads, Werewolf, TRV
- Ownership Interest Less Than 5 Percent: Werewolf, Pyxis
- I will be discussing non-FDA approved indications during my presentation.

Immunotherapy for Metastatic Kidney Cancer (Renal Cell Carcinoma; RCC)

History of Immunotherapy in mRCC

FDA-approved Immunotherapies for mRCC

Drug	Approved	Indication	Dose
High dose Interleukin-2	1992	Metastatic RCC	600,000 International Units/kg (0.037 mg/kg) IV q8hr infused over 15 minutes for a maximum 14 doses, THEN 9 days of rest, followed by a maximum of 14 more doses (1 course)
Interferon-a + bevacizumab	2009	Clear cell RCC	IFN 9 MIU s.c. three times a week + bev 10 mg/kg Q2W
Nivolumab	2015	Clear cell RCC refractory to prior VEGF targeted therapy	3mg/kg or 240mg IV Q2W or 480mg IV Q4W
Nivolumab +ipilimumab	2018	Clear cell RCC, treatment naïve	3mg/kg nivo plus 1mg/kg ipi Q3W x 4 doses then nivo maintenance at flat dosing
Pembrolizumab + axitinib	2019	Advanced RCC, Treatment naïve	200 mg pembro Q3W + 5 mg axitinib twice daily
Avelumab + axitinib	2019	Advanced RCC, Treatment naïve	800 mg avelumab Q2W + 5 mg axitinib twice daily

High Dose IL-2 in mRCC

- 20 year analysis of 259 patients
- ORR = 20%
 - 9% CR (n = 23)
 - 12% PR (n = 30)
- Median duration of response = 15.5 months
- Median OS = 19 months

Second-Line Nivolumab in mRCC

- CheckMate 025 Phase III trial
- Metastatic, clear-cell disease
- One or two previous antiangiogenic treatments
- Nivolumab (3 mg/kg IV Q2W) vs everolimus (10 mg daily)

Second-Line Nivolumab in mRCC PD-L1 subgroups

PD-L1 ≥ 1%

PD-L1 < 1%

Overall survival by subgroup analyses

Subgroup	Nivolumab n/N	Everolimus n/N
MSKCC risk group		
Favorable	45/145	52/148
Intermediate	101/201	116/203
Poor	37/64	47/60
Prior anti-angiogenic regimens		
1	128/294	158/297
2	55/116	57/114
Region		
US/Canada	66/174	87/172
Western Europe	78/140	84/141
Rest of the world	39/96	44/98
Age, years		
<65	111/257	118/240
≥65 to <75	53/119	77/131
≥75	19/34	20/40
Sex		
Female	48/95	56/107
Male	135/315	159/304
		0.25
Motzer R, et al. NEJM 2015 .		

← Nivolumab Everolimus → 11

Society for Immunotherapy of Cancer **ADVANCES IN** 0.9

Nivo Overall Survival in Phase I and II studies

In phase I and II studies, min follow-up was 50.5 mos and 49.2 mos, respectively

First-line Nivolumab + Ipilimumab in mRCC

Patients

- Treatment-naïve
 advanced or
 metastatic clear-cell
 RCC
- Measurable disease
- KPS ≥70%
- Tumor tissue available for PD-L1 testing

Randomize 1:1

Stratified by

- IMDC prognostic score (0 vs 1–2 vs 3–6)
- Region (US vs Canada/Europe vs Rest of World)

Treatment

Arm A

3 mg/kg nivolumab IV + 1 mg/kg ipilimumab IV Q3W for four doses, then 3 mg/kg nivolumab IV Q2W

Arm B
50 mg sunitinib orally once
daily for 4 weeks
(6-week cycles)

Treatment until progression or unacceptable toxicity

OS (probability)

OS Results: 42 Months Follow-up Data

PFS Results: 42 Months Follow-up Data

Nivolumab/Ipilimumab Activity Based on IMDC Category

Property	Favorable	Intermediate/Poor
ORR	39%	42%
CR	8%	11%
42 mos DOR Rate	62%	60%
42 mos PFS Rate	28%	35%
42 mos OS Rate	70%	52%

Efficacy of nivolumab/ipilimumab similar across IMDC Categories 8 x more CRs than sunitinib, 28%-35% plateau on PFS curves

PFS per Investigator: Intermediate/Poor-Risk Sarcomatoid Patients

What about anti-PD1 monotherapy? Can Nivo/ipi salvage anti-PD1 non-responders?

Patients

- Recurrent or advanced/metastatic clear cell or non-ccRCC
- Measurable disease per RECIST v1.1
- No prior systemic therapy
- Karnofsky performance status ≥70%

Pembrolizumab 200 mg Q3W assessed at week 12 and Q6W thereafter until week 54, and Q12W thereafter

Response

- **Endpoints**
 - Primary: ORR per RECIST v1.1 (blinded independent central review)
 - Secondary: DOR, DCR, PFS, OS, safety, and tolerability
 - Exploratory: tissue based biomarkers (e.g. IHC, RNA sequencing)

Pembrolizumab ORR in First line ccRCC

		N = 110	0
	n	%	95% CI
ORR	42	38.2	29.1-47.9
DCR (CR + PR + SD ≥6 months)	65	59.1	49.3-68.4
Best overall response			
CR	3	2.7	
PR	39	35.5	
SD	35	31.8	
PD	31	28.2	
No assessment	2	1.8	

HCRN GU16-260: Study Design

IIT at 12 sites conducted through the HCRN GU Group (CM209-669)

Extensive Biomarker studies in collaboration with the DFHCC Kidney Cancer SPORE DOD Translational Partnership Grant (Atkins, Wu)

Scans q12 weeks; Confirm response and PD; Measurements by RECIST 1.1 Mandatory biopsies

Objective Response Rates: Nivo Monotherapy (Part A)

Best Response N (%)	I∧	IMDC Risk Category (N)		
14 (75)	Favor (30) N (%)	Interm (80) N (%)	Poor (12) N (%)	Total (N= 123) N (%)
CR	4 (13.3)	3 (3.8)	0	7 (5.7)
PR*	11 (36.7)	17 (21.2)	3 (25)	32 (26.0)
SD	15 (50.0)	26 (32.5)	5 (42)	46 (37.4)
PD	0	34 (42.5)	4 (33)	38 (30.9)
ORR	15/30 (50)	20/80 (25)	3/12 (25)	39/123 (31.7)
(95% CI) %	(31.3, 68.7)	(16.6,	35.1)	(23.6, 40.7)

ORR: 39/123 = 31.7% 95% CI (23.6, 40.7%)

Sarcomatoid RCC ORR: 7/22 = 31.8% (all PRs) 95% CI (13.9, 54.9%)

^{* 1} PR with missing IMDC Risk Category

Duration of Response: Nivo Monotherapy (Part A)

0.

0.0

0.8

0.7

0.6

0.5

0.4

0.2

0.7

Probability

KM plot of Duration of Response (DOR), Part A 94.3% 87.6% 58.9% 51.6% 0.0 0.8 0.7 Median DOR (95% CI) 9.0 19.3 (10.9, NA) mos Probability 0.5 0.4 0.2 DOR n/events, 0.7 median (95% CI) = 39/12, 19.3 (10.9, NA) mos 0.0 9 12 30 15 24

Time (months)

NR (5.5, NA) mos

IMDC = Fav., median (95% CI) = 15/1, NR (5.5, NA) mos

IMDC = Int./Poor, median (95% CI) = 23/11, 11.0 (6.9, NA) mos

15

Time (months)

30

11.0 (6.9, NA) mos

Objective Response Rates: Nivo/Ipi Salvage (Part B)

Best Response	IMDC	IMDC Risk Category (N=30)			
N (%)	Favor (4)	Interm (24)	Poor (2)	N (%)	
CR	0	0	0	0	
PR	2 (50)	2 (8.3)	0	4 (13.3)	
SD	1 (25)	6 (25)	0	7 (23.3)	
PD	1 (25)	16 (66.7)	2 (100)	19 (63.3)	

ORR: 4/30 = 13.3%

95% CI (3.8, 30.7)

Atkins M et al. Presented at: ASCO 2020; May 29-31,2020; Virtual Meeting. Abstract 5006.

Combination of Anti-PD1 and VEGF Pathway Blockade

Randomized Phase III Study Designs for IO + VEGF

IMmotion151
Rini et al. Lancet

Treatment-naive advanced or metastatic RCC with clear cell and/or sarcomatoid histology; KPS ≥ 70; (N = 915)

Atezolizumab 1200 mg IV + **Bevacizumab** 15 mg/kg IV Q3W

Sunitinib 50 mg PO QD for 4 wks on, 2 wks off

1° EP: PFS in PD-L1+ pts; OS in ITT pts

JAVELIN Renal 101

Motzer et al. NEJM

Treatment-naive advanced RCC with a clear cell component; ECOG PS 0 or 1; (N = 886)

Avelumab 10 mg/kg IV Q2W + Axitinib 5 mg PO BID in 6-wk cycles

Sunitinib 50 mg PO QD for 4 wks on, 2 wks off

1° EP: PFS and OS in PD-L1+ pts

KEYNOTE-426

Rini et al. NEJM

Treatment-naive advanced clear-cell RCC; KPS ≥ 70%; (N = 861)

Pembrolizumab 200 mg IV Q3W + Axitinib 5 mg PO BID

Sunitinib 50 mg PO QD for 4 wks on, 2 wks off

1° EP: PFS and OS in ITT

KN 426: OS in the ITT Population

⁴²⁹ ³⁷⁹ ³³⁶ ³⁰⁶ ³⁰⁶ ²⁶⁸ ¹³⁴ ¹⁶ ⁰
^aAs superiority of pembrolizumab plus axitinib was demonstrated at the first interim analysis, no alpha was allocated to overall survival; only nominal p-values are reported. Data cutoff: January 6, 2020.

Plimack E et al. Presented at: ASCO 2020; May 29-31, 2020; Virtual Meeting. Abstract 5001.

^aAs superiority of pembrolizumab plus axitinib was demonstrated at the first interim analysis, no alpha was allocated to PFS; only nominal p-values are reported. Data cutoff: January 6, 2020.

Plimack E et al. Presented at: ASCO 2020; May 29-31, 2020; Virtual Meeting. Abstract 5001.

Society for Immunotherapy of Cancer ADVANCES IN

Confirmed Objective Response Rate ITT Population

	Pembro + Axi n = 432	Sunitinib n = 429
Best Response, n (%)		
CR	38 (8.8)	13 (3.0)
PR	222 (51.4)	158 (36.8)
SD	100 (23.1)	150 (35.0)
PD	49 (11.3)	74 (17.2)
NE ^b	16 (3.7)	28 (6.5)
NA ^c	7 (1.6)	6 (1.4)
Median (range) duration of response, mo	23.5 (1.4+ to 34.5+)	15.9 (2.3 to 31.8+)

^aAs superiority of pembrolizumab plus axitinib was demonstrated at the first interim analysis, no alpha was allocated to confirmed objective response; only nominal p-values are reported. ^bPost-baseline assessment(s) available however not being evaluable (i.e., all post-baseline assessment(s) with insufficient data for assessment of response per RECIST 1.1. or CR/PR/SD <6 weeks from randomization). ^cNo post-baseline assessment available for response evaluation; + indicates an ongoing response at time of last disease assessment.

Data cutoff: January 6, 2020.

Plimack E et al. Presented at: ASCO 2020; May 29-31, 2020; Virtual Meeting. Abstract 5001.

Phase III TKI/IO-based Combinations in RCC-Current Status

Control	Comparator(s)	Median Follow-up	PFS (HR)	OS (HR)
Sunitinib	Axitinib + Pembrolizumab ^{1,2*}	12.8 mo	Yes (0.69)	Yes (0.53)
Sumilino	Axitifiib + Pembrolizumab-/-	27.0 mo	Yes (0.71)	Yes (0.68)
Sunitinib	Bevacizumab + Atezolizumab ³	15 mo	Yes (0.88)	TE (0.93)*
Sunitinib	Axitinib + Avelumab ⁴	10.8 mo	Yes (0.69)*	TE (0.78)*
Sunitinib	Cabozantinib + Nivolumab ⁵	18.1 mo	Yes (0.51)	Yes (0.60)
Sunitinib	(Lenvatinib + Eve) vs (Len + Pembro) ⁶	TE	TE	TE

1. Rini BI et al. N Engl J Med. 2019;380:1116-1127. 2. Plimack E et al. Presented at: ASCO 2020; May 29-31, 2020; Virtual Meeting. Abstract 5001. 3. Rini BI et al. Lancet. 2019;393:2404-241. 4. Motzer RJ et al. N Engl J Med. 2019;380:1103-1115. 5. Grünwald V, Calvo E. Ann Oncol. 2020;S0923-7534(20)39838-0. 6.

https://clinicaltrials.gov/ct2/show/NCT0281

HOPA Sitc

^{*} ITT populations

Efficacy Results by Prior Anticancer Therapy Subgroup^a

	Anti-PD-1/ PD-L1 ^b	Anti-PD-1/PD-L1 and Anti-VEGF ^c	Nivolumab + Ipilimumab
Parameter	(N = 104)	(n = 68)	(n = 38)
ORR, %	55	59	47
(95% CI)	(45–65)	(46–71)	(31–64)
Best objective response, %			
Partial response	55	59	47
Stable disease	36	31	42
Progressive disease	5	6	8
Not evaluable	5	4	3
Median duration of response, months	12	9	NR
(95% CI)	(9–18)	(7–17)	(7-NR)

^a By irRECIST per investigator assessment. Patients can belong to > 1 category; ^b in combination or as monotherapy; ^c in combination or sequentially.

First-Line Therapy for RCC: Conclusions (1)

- IO based doublets represent current SOC
 - No clear role for IMDC classification
 - VEGFR TKIs only indicated in patients who can't get IO therapy
 - PDL1 expression too inexact to select pts
- Nivo + ipi represents a current SOC for treatment naïve patients with intermediate and poor risk advanced RCC
 - Exclusion of good risk patients doesn't take into consideration IO endpoints
 - Durable response (TFS) possible in 30-35% of patients
- Anti-PD1 monotherapy may play a role in TKI/Ipi averse pts, particularly those with favorable risk

First-Line Therapy for RCC: Conclusions (2)

- Anti-PD1/PDL1 + anti-VEGF represents an alternative SOC
- Efficacy may relate to efficacy of TKI component/study design (bevacizumab < axitinib < cabozantinib < lenvatinib)/(early OS HR > late)
 - Axi/Pembro produces best OS HR (could be early reporting)
 - Cabo/Nivo results encouraging for stage of reporting
 - Len/Pembro promising 2nd line data; 1st line pending
- On the other hand
 - Unclear if activity is synergistic or merely additive
 - Expense and likely toxicity exceed sequential treatments
 - Ability to produce durable TFS yet to be established

Ipi/Nivo vs VEGF/PD1 Blockade?

 Need longer follow-up and appropriate phase III trials with IO endpoints, standardized biomarkers, and universally available crossover to be able to make rational treatment decisions

- Need biomarker studies to help us sort out who should get which therapy, rather than focusing on clinical variables
 - Biomarkers should be tied to IO endpoints

Cosmic-313 Trial Design

Immunotherapy for Metastatic Bladder Cancer (Urothelial Carcinoma; UC)

Approved checkpoint inhibitor for non-muscle invasive bladder cancer

Drug	Approved	Indication	Dose
Pembrolizumab	January 2020	BCG-unresponsive, high-risk NMIBC, with or without papillary tumors and ineligible for cystectomy	200 mg Q3W

Response, n (%)	KEYNOTE-057 cohort A (n=97)
Complete response	40 (41.2)
Non-complete response	56 (57.7)
Persistent	40 (41.2)
Recurrent	6 (6.2)
NMIBC stage progression	9 (9.3)
Progression to T2	0
Extravesical disease	1 (1.0)
Non-evaluable	1 (1.0)

Approved checkpoint inhibitors for mUC – *cisplatin refractory*

Drug	Approved	Indication	Dose
Atezolizumab	2016 (2018)	Advanced/metastatic UC	1200 mg Q3W
Avelumab	2017	Advanced/metastatic UC	10 mg/kg Q2W
Durvalumab	2017	Advanced/metastatic UC	10 mg/kg Q2W
Nivolumab	2017	Advanced/metastatic UC	240 mg Q2W or 480 mg Q4W
Pembrolizumab	2017 (2018)	Advanced/metastatic UC	200 mg Q3W

Approved checkpoint inhibitors for mUC – *cisplatin ineligible*

Drug	Approved	Indication	Dose
Atezolizumab	2017 (2018)	Advanced/metastatic UC (PD-L1 ≥5%)	1200 mg Q3W
Pembrolizumab	2017 (2018)	Advanced/metastatic UC (PD-L1 CPS ≥10)	200 mg Q3W

June 2018

FDA limits the use of Atezolizumab and Pembrolizumab for some urothelial cancer patients

- Locally advanced or metastatic urothelial carcinoma and ineligible for cisplatin-based chemo and tumor PD-L1 (CPS ≥ 10, pembro; IC ≥ 5% tumor area, atezo)
- Patients ineligible for any platinum-containing chemotherapy regardless of PD-L1 status

Tumor Mutational Burden (TMB) May Signal Responses with PD-1 Blockade Atezolizumab in mUC

In development: Ipilimumab + Nivolumab CheckMate 032

ORR by Baseline Tumor PD-L1 Expression per Investigator

In development: Ipilimumab + Nivolumab CheckMate 032

ADVANCES IN Cancer ADVANCES IN Cancer ADVANCES IN Cancer ADVANCES IN Approved antibody-drug conjugate for mUC

Drug	Approved	Indication	Dose
Enfortumab vedotin	December 2019	Locally advanced/metatstatic UC with previous α PD-1/PD-L1 and Pt-based chemotherapy	1.25 mg/kg IV on days 1, 8, and 15 of each 28-day cycle

EV-201: Cohort 1 Nectin-4 Expression

¹ Five patients did not have adequate tissue for Nectin-4 testing

EV-201: Cohort 1 Change in Tumor Measurements per BICR

The Spectrum of Prostate Cancer

Sipuleucel-T in mCRPC

First anti-cancer therapeutic vaccine

Sipuleucel-T in mCRPC

- Post-hoc analysis of Phase 3 trial PROCEED (N = 1902 mCRPC patients)
- African-Americans (AA) = 438; Caucasians
 (CAU) = 219
- Median OS = 35.2 (AA) vs 29.9 mo (CAU);
 HR 0.81, 95% CI 0.68–0.97; p = 0.03.
- AA race was independently associated with prolonged OS on multivariate analysis (HR 0.60, 95% CI 0.48–0.74; p < 0.001)

Limited efficacy of Checkpoint Inhibitors in mCRPC No FDA-approved CIs for mCRPC

KEYNOTE-199 (Pembrolizumab)

- Pembrolizumab is approved for all Microsatellite Instability-High (MSI-H) solid tumors
- MSI-H incidence is low in PC
 - Localized PC ~2%
 - Autopsy series of mCRPC
 ~12%
- MSI testing may offer pembrolizumab as an option

In development: nivolumab + ipilimumab in mCRPC

- Checkmate 650
- Nivo 1 mg/kg + Ipi 3 mg/kg Q3W for 4 doses, then Nivo 480 mg Q4W
- Progressed after 2nd-gen hormonal: 26% response @ 11.9 mo, 2 CR
- Progressed after chemo+hormonal: 10% response @ 13.5 mo, 2 CR
- Higher ORR in:
 - PD-L1 > 1%
 - DNA damage repair deficient
 - homologous recombination deficiency
 - high tumor mutational burden

Future Combinations in mCRPC to Engage Immune System

- Hormonal therapy
- Radiation
- Radium-223
- PARP inhibitors
- Chemotherapy
- New targets

Conclusions

- The role of immunotherapy in GU malignancies is increasing
- In RCC, many front-line checkpoint inhibitor options are approved
- Multiple checkpoint inhibitors approved for advanced/metastatic urothelial carcinoma
- Low immune engagement in prostate cancer has limited the application of immunotherapy in this disease

Additional Resources

Rini et al. Journal for ImmunoTherapy of Cancer (2016) 4:81 DOI 10.1186/s40425-016-0180-7

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of renal cell carcinoma

Brian I. Rini¹, David F. McDermott², Hans Hammers³, William Bro⁴, Ronald M. Bukowski⁵, Bernard Faba⁶, Jo Faba⁶, Robert A. Figlin⁷, Thomas Hutson⁸, Eric Jonasch⁹, Richard W. Joseph¹⁰, Bradley C. Leibovich¹¹, Thomas Olencki¹², Allan J. Pantuck¹³, David I. Quinn¹⁴, Virginia Seery², Martin H. Voss¹⁵, Christopher G. Wood⁹, Laura S. Wood¹ and Michael B. Atkins^{16*}

McNeel et al. Journal for ImmunoTherapy of Cancer (2016) 4:92 DOI 10.1186/s40425-016-0198-x

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of prostate carcinoma

Douglas G. McNeel¹, Neil H. Bander², Tomasz M. Beer³, Charles G. Drake⁴, Lawrence Fong⁵, Stacey Harrelson⁶, Philip W. Kantoff⁷, Ravi A. Madan⁸, William K. Oh⁹, David J. Peace¹⁰, Daniel P. Petrylak¹¹, Hank Porterfield¹², Oliver Sartor¹³, Neal D. Shore⁶, Susan F. Slovin⁷, Mark N. Stein¹⁴, Johannes Vieweg¹⁵ and James L. Gulley^{16*}

Kamat et al. Journal for ImmunoTherapy of Cancer (2017) 5:68 DOI 10.1186/s40425-017-0271-0

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of bladder carcinoma

Ashish M. Kamat^{1*}, Joaquim Bellmunt², Matthew D. Galsky³, Badrinath R. Konety⁴, Donald L. Lamm⁵, David Langham⁶, Cheryl T. Lee⁷, Matthew I. Milowsky⁸, Michael A. O'Donnell⁹, Peter H. O'Donnell¹⁰, Daniel P. Petrylak¹¹, Padmanee Sharma¹², Eila C. Skinner¹³, Guru Sonpavde¹⁴, John A. Taylor Ill¹⁵, Prasanth Abraham¹⁶ and Jonathan E. Rosenberg¹⁷

Case Study

Case Study 1

- 62 yo man with 7 year h/o Crohn's Disease rx'ed with intermittent azathioprine and steroids with response, presented with abd pain, weight loss and fatigue
- Abd MRI: 12 cm R upper pole renal mass with paracaval adenopathy
- R radical nephrectomy revealed a 12 cm ccRCC with 90% sarcomatoid features; 2/6 LNs + (T3a N1a M0); declined adjuvant Rx
- 2 mos post-op: he has night sweats, anorexia; CT CAP showed 4.4 cm mass in R nx bed, sub-cm pulm nodules and abd LNs
- How would you treat?

How would you treat?

- A) Sunitinib/Pazopanib
- B) Cabozantinib
- C) Ipilimumab/Nivolumab
- D) Axitinib/Pembrolizumab
- E) Other

Case Study (History 2)

- Patient started on cabozantinib 60 mg daily by outside oncologist
- Symptoms persisted and CT scan 12 weeks into treatment showed significant interval progression

How would you treat now?

- A) Ipi/Nivo
- B) Axi/Pembro
- C) Nivolumab monotherapy
- D) Lenvatinib/everolimus
- E) Other

Case Study (History 3)

- He was begun on nivo monotherapy
- Symptoms rapidly improved, he regained energy and lost weight
- He experienced rash and joint pains, but no Crohn's flare
- Scans showed major response

Case Study Image- Abdominal Nodes

4/2018

4/2019

Case Study Image 2: R Nx Bed Lesion

4/2018 4/2020

What would do now?

- A) Continue Nivo Monotherapy
- B) Switch to Axi/pembro
- C) Add Ipilimumab
- D) Switch to Lenvatinib/everolimus
- E) Evaluate for stopping therapy

Case Study 1 (History 4)

- PET-CT showed uptake only in the R Nx bed lesion.
- Biopsy of residual Nx bed lesion after 2 years of Rx showed no cancer.
- Treatment stopped; patient continues to do well off therapy now 6 months after treatment cessation.

Case Study 1: Take Home Messages

- 1) Immunotherapy works particularly well relative to VEGFR TKIs in patients with RCC and sarcomatoid histology
- 2) Anti-PD1 monotherapy represents an option for patients where it is risky to give nivo/ipi
- 3) Anti-PD1 monotherapy doesn't always exacerbated underlying autoimmune conditions
- 4) Many residual radiographic abnormalities may not represent active cancer in patients responding to immunotherapy
- 5) Anti-PD1 therapy can be safely stopped in patients without active cancer turning survivors into "thrivers".

