Adoptive Cell Therapy vs. Bispecific Antibodies

Society for Immunotherapy of Cancer 2016

Crystal L Mackall MD Professor of Pediatrics and Medicine Associate Director, Stanford Cancer Institute

Presenter Disclosure Information

Crystal L Mackall MD

The following relationships exist related to this presentation:

Consulting: Adaptimmune, Glaxo-Smith-Kline, Servier/Pfizer, Unum, Vor; Ownership interest: Unum; Royalties: Juno

Antibody Based Immunotherapies: B Cell Malignancies

 First antibody to demonstrate unequivocal antitumor activity was Rituximab in NHL (Blood 1997)

RAPID COMMUNICATION

IDEC-C2B8 (Rituximab) Anti-CD20 Monoclonal Antibody Therapy in Patients With Relapsed Low-Grade Non-Hodgkin's Lymphoma

By David G. Maloney, Antonio J. Grillo-López, Christine A. White, David Bodkin, Russell J. Schilder, James A. Neidhart, Nalini Janakiraman, Kenneth A. Foon, Tina-Marie Liles, Brian K. Dallaire, Ken Wey, Ivor Royston, Thomas Davis, and Ronald Levy

• First bispecific antibody to demonstrate unequivocal antitumor activity was Blinatumomab in B-ALL (Topp et al, J Clin Onc 2011)

VOLUME 29 · NUMBER 18 · JUNE 20 2011

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

 First chimeric antigen receptor based therapy to demonstrate unequivocal antitumor activity was CD19-CAR in NHL (Blood 2010)

Plenary paper

B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells

James N. Kochenderfer,¹ Mark E. Dudley,² Steven A. Feldman,² Wyndham H. Wilson,³ David E. Spaner,⁴ Irina Maric,⁵ Maryalice Stetler-Stevenson,⁶ Giao Q. Phan,² Marybeth S. Hughes,² Richard M. Sherry,² James C. Yang,² Udai S. Kammula,² Laura Devillier,² Robert Carpenter,¹ Debbie-Ann N. Nathan,² Richard A. Morgan,² Carolyn Laurencot,² and Steven A. Rosenberg²

Factors Enabling Effective Mab Based Immunotherapy for B Cell Malignancies

- Exquisite knowledge of the cell surface landscape
- Several developmental antigens with high level cell surface expression expressed homogeneously on the malignant population
- Tolerable off-tumor, on-target effects
- ? Permissive microenvironment
 - Speculation fueled by higher response rates with CAR-T cells for B-ALL compared to lymphoma
 - We know very little about the microenvironment of leukemia or lymphoma and how it compares to solid tumors

Which Immunotherapy Agent? Blinatumomab vs CD19-CAR T Cells

- TOTAL ABSENCE OF RANDOMIZED CONTROLLED TRIALS THEREFORE
 CLEAR DATA IS NOT AVAILABLE
- Toxicity: no clear distinction between modalities
 - Cytokine Release Syndrome
 - Largely related to disease burden
 - Managed safely in most cases using standardized grading and treatment algorithms
 - Emerging data suggest that prevention or preemptive strategies may diminish risk
 - Less risk when CD19 directed immunotherapy in the setting of low burden
 - Neurotoxicity
 - Usually reversible
 - Biology remains poorly understood
 - 3 Fatal events reported with CAR were restricted to specific combination of a unique preparative regimen with a unique CAR
- Ease of administration/availability: Blinatumomab
 - Short half-life is amenable to controlling delivery in the response to toxicity

CD19-Targeted Immunotherapies for B-ALL: Response Rates Across Trials

Agent	Population	Ν	CR Rate	MRD Only Enrolled	Reference	
BLINA	Ph-, primary refractory or relapsed ALL adult	189	43%	Unknown	Topp et al., Lancet Oncology 2014 ²⁴	INTEN T TREA
BLINA	Adults >65 R/R B-ALL	261	47%	Unknown	Kantarjian et al., Cancer 2016 ⁹	
BLINA	Pediatric R/R ALL	31	31%	Unknown	Gore et al. ASH abstract 2014 ⁴	
BLINA	Pediatric R ALL	9	44%*	Unknown	Schlegel et al., Hematologica 2014 ³	
BLINA	Primary refractory or relapsed ALL adult	36	69%	No	Topp et al., JCO 2014 ²⁵	
CAR-T 4-1BB	Pediatric and adult, R/R ALL	30	90%	Yes	Maude et al., NEJM 2014 ¹⁹	
CAR-T CD28	Pediatric R/R ALL	20	70%	Yes	Lee et al., Lancet 2015 ²	
CAR-T CD28	R/R B cell ALL	16	88%	Yes	Davila et al., STM 2014 ⁵	
CAR-T 4-1BB	Adults R/R B cell ALL	29	93%	Yes	Turtle et al., JCI 2016 ²⁶	
CAR-T	Adults R/R B-ALL	32	91%	Yes	Park et al, ASCO abstract 2015 ²⁸	
CAR-T	Pediatric R/R B-ALL	37	91%	Unknown	Turtle et al., ASCO abstract 2015 ²⁹	
CAR-T 4-1BB (HUMANIZED)	Pediatric R/R B-ALL	6	50%	Unknown	Maude S, ASH abstract, 2015 ²⁷	

Davis and Mackall, 2016

Which Immunotherapy Agent? Blinatumomab vs CD19-CAR T Cells

- Toxicity: likely equivalent
- Ease of administration/availability: Blinatumomab
- Response rate
 - Data incomplete due to lack of randomized trials
 - Higher reported response rates to CD19-CAR in single arm studies
 - Care must be taken interpreting response rates reported that are not intent-totreat
- Tissue trafficking
 - CAR-T cells traffic efficiently to CNS
 - CAR-T may also traffic to testes
 - Tissue trafficking of Blinatumomab less clear
- Durability of effect
 - Blinatumomab has very short half life
 - No clear evidence of induction of persisting anti-leukemic immune responses?
 - How durable are CAR based responses?

Differential Immunokinetics of CD19.28.z vs CD19.BB.z CAR in Clinical Trials

Lee, Lancet, 2014

Maude, NEJM, 2014

4-1BB Containing CARs Not Infrequently Persist for Several Months

Immunotherapy for B-ALL: State-of-the-Field 2016

- Successes have already resulted in FDA approval of blinatumomab for adult and pediatric B-ALL. Approvals expected for CD19-CAR in 2017.
- Patterns of clinical usage will emerge as treating physicians develop more experience with these agents, larger studies become available and CAR-T cells become more widely available.
- How best to incorporate these therapeutics into up front or second-line therapies?
 - Require large studies primarily driven by disease-specific experts and/or cooperative groups
- Success of Immunotherapy for B cell malignancies has provided a treasure trove of opportunities to advance the larger field of immunotherapy
 - Standardization of supportive care regimens for cytokine release syndrome
 - Development of approaches to commercialize cell therapies
 - What distinguishes responders from non-responders?
 - What are the patterns of resistance?

Antigen Loss Escape is a Primary Cause of Acquired Resistance Following CD19-Based Immunotherapy

- ✓ Observed following both Blinatumomab and CD19-CAR
- ✓ Occurs in at least 30% of CD19-CAR responders
- ✓ Most common cause of relapse following 4-1BB containing CD19-CARs

Resistance via <u>Isoform Switch</u> Increased CD19 Isoforms Lacking the Immune Targeted Epitope

- ✓ true incidence unknown due to short follow-up
- ✓ incidence increases as therapeutic potency of the T cells is increased
- unknown whether patients predisposed to this can be identified pretherapy
- ✓ unknown whether CD19– B-ALL has increased therapeutic vulnerability

Resistance via <u>Lineage Switch</u>: Emergence of Myeloid Leukemia Following CD19-CAR

May 2016 Acquisition of a CD19-negative myeloid phenotype allows immune escape of *MLL*-rearranged B-ALL from CD19 CAR-T-cell therapy

Rebecca Gardner,^{1,2} David Wu,³ Sindhu Cherian,³ Min Fang,³ Laïla-Aïcha Hanafi,⁴ Olivia Finney,¹ Hannah Smithers,¹ Michael C. Jensen,^{1,2} Stanley R. Riddell,^{4,5} David G. Maloney,^{4,5} and Cameron J. Turtle^{4,5}

¹Seattle Children's Research Institute, ²Department of Pediatrics, and ³Department of Laboratory Medicine, University of Washington, Seattle, WA; ⁴Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; and ⁵Department of Medicine, University of Washington, Seattle, WA

- appears less common than isoform switch
- likely occurs with higher frequency in more primitive B-ALL subtypes (e.g. MLL rearranged)

Resistance via Lineage Switch: CD19-CAR in Murine Model of B-ALL Drives Emergence of Myeloid Leukemia Following CD19-CAR

E2A-PBX Model of Murine ALL Treated with Murine CD19-CAR

All Mice Eventually Die Due to E2A-PBX+ Leukemia

Jacoby et al, Nat Comm, 2016

CD19 Loss Escape in B-ALL: The Canary In the Coal Mine

- CD19 is a near perfect target for mAb based therapy
 - ✓ Pro: Expressed at high density
 - ✓ Pro: Expressed on 99.9999% of cells
 - $\checkmark\,$ Pro: Not expressed on other vital tissues
 - ✓ Con: Not required for cell survival
- Immune pressure on one antigen alone will lead to selection of antigen negative variants with high frequency, over time
- Antigens targeted thus far in solid tumors show greater heterogeneity in antigen expression
 - ✓ Typically expressed at lower densities across a greater range
 - ✓ Often not expressed in 99.9% of cells
- As mAb based therapeutics become more potent (mAbs, bispecifics, CARs), multi-antigen targeting will become increasingly important for effective disease control

CD22 Is Ubiquitously Expressed on B-ALL, Including Most CD19⁻ Leukemias Emerging Following Immunotherapy

Generation and Optimization of a CD22 CAR, Haso et al, Blood 2013

CD22-CAR Displays Similar Potency as CD19-CAR Against B-ALL

Clinical Trial Initiated At NIH Clinical Center, December 2014 PI: Terry Fry MD

CD22-CAR Induces Remission in CD19-CAR Resistant B-ALL

Beyond CD19: Potential Targets for B-ALL

• CD22

- Generally retained on CD19– B-ALL
- Significant response rate observed with CD22-CAR for CD19-naïve and CD19resistant B-ALL
- Full dataset will be presented at ASH 2016
- TSLPR (CRLF2)
 - Oncogene overexpressed in many high-risk B-ALL
 - CAR targeting TSLPR shows activity in murine models (Qin et al, Blood, 2015)
- ROR1
 - ROR1 CAR developed by Riddell and colleagues (Berger, Canc Immunol Res, 2015)
 - ROR1 expressed in ~45% of pediatric B-ALL (Dave, PLoS One, 2012)
- CD123 (Ruella, J Clin Invest 2016)
 - CD123 expressed on CD19 B-ALL, with retention in most cases of CD19– B-ALL
 - CD123 CAR effectively targeted CD19– B-ALL in preclinical models
 - Mixed populations of CD19-CAR T cells plus CD123-CAR T cells prevented CD19escape in a murine model using
 - Dual expression of CD19-CAR and CD123-CAR on the same cell led to more potent activity against B-ALL in murine models
 - CD123-CAR previously demonstrated to mediate hematopoieiic toxicity in preclinical models (Gill, Blood, 2014)

Options for Simultaneous Targeting: Multispecific CARs

Co-administration

Co-expression

Generation and Optimization of a Bivalent CAR Targeting CD19 and/or CD22

CD19/22 Bispecific CAR Shows Efficient Killing of CD19+CD22+; CD19-CD22+ and CD19+/CD22– B-ALL

CD19/CD22-Bivalent CAR Mediates Potent Anti-Leukemia Activity in Preclinical Models

Conclusions

- Success of mAb based therapies for B cell malignancies is providing new options for clinical management of these diseases
- Absent randomized controlled trials, physicians are likely to soon be faced with decisions regarding which immunotherapy to deliver: bispecific mAbs vs CAR-T cells
- Antigen loss escape is emerging as a major cause of resistance to CD19-based immunotherapies
 - Likely enhanced by sequential CD19-based therapies
- Next generation CARs are under development that can simultaneously target two antigens
 - Optimal approach to do this is still being defined
- Trials are need to determine whether simultaneous dual antigen targeting can prevent or diminish antigen loss escape

Acknowledgments

NCI

- Trey Lee
- Terry Fry
- Nirali Shah
- Haiying Qin
- Rimas Orentas
- Waleed Haso

Mackall Lab @ Stanford

- Robbie Majzner
- Samuel Haile
- Sabine Heitzeneder
- Evan Weber
- Rachel Lynn
- Meena Malipatlolla
- Peng Xu
- Kevin Chow
- Cynthia Klein
- Meena Kadapakkam
- Elena Sotillo-Pineiro

THE PATIENTS AND FAMILIES!

LUDWIG INSTITUTE FOR CANCER RESEARCH

