

Immunotherapy for the Treatment of Hematologic Malignancies Deborah M. Stephens, DO Co-Director CART Program, Huntsman Cancer Institute

Society for Immunotherapy of Cancer

Disclosures

- Research Funding: Acerta, Gilead, Karyopharm
- Honoraria/Consulting: Genentech
- I will be discussing non-FDA approved indications during my presentation.

Presentation Outline

- Monoclonal Antibodies
- Checkpoint Inhibitors
 - Nivolumab
 - Pembrolizumab
- BiTE Therapy
 - Blinatumumab

- CART Therapies
 - Axicabtagene ciloleucel
 - Tisagenlecleucel
 - Toxicity
- Future Indications for Immunotherapy
 - Multiple Myeloma

Monoclonal Antibodies Targeting B Cell Lymphomas

Presentation Outline

- Monoclonal Antibodies
- Checkpoint Inhibitors
 - Nivolumab
 - Pembrolizumab

Checkpoint Inhibitors

- PD-1 (T-cells) = looks for PD-L1 on other cells
- Once PD-1 and PD-L1 are bound = prevents T-cell induced apoptosis
- Tumor cells upregulate PD-L1 so they will not be killed by T-cells
- Blocking this interaction allows the tumor cells to be killed by the T-cells (and some normal cells)

- PD-1 = Passport control
- PD-L1 = Passport if valid, can access and continue living in the country
- Tumor cells make fake passports
- Checkpoint inhibitors = border wall (don't allow interaction of passport and passport control)
- Blocks admission of tumor cells (and a lot of normal cells as well)

FDA-approved Checkpoint Inhibitors for Lymphomas

- Nivolumab (anti-PD-1)
 - CheckMate 205/039: R/R cHL following autologous hematopoietic stem cell transplantation and post-transplantation brentuximab vedotin
- Pembrolizumab (anti-PD-1)
 - KEYNOTE-087: Refractory cHL, or patients whose disease has relapsed after 3+ lines of therapy
 - KEYNOTE-170: Refractory primary mediastinal large B-cell lymphoma (PMBCL), or those who have relapsed after 2+ lines of therapy

Nivolumab in Hodgkin Lymphoma

Table 3. Clinical Activity in Nivolumab-Treated Patients.*				
Variable	All Patients (N=23)	Failure of Both Stem-Cell Transplantation and Brentuximab (N=15)	No Stem-Cell Transplantation and Failure of Brentuximab (N=3)	No Brentuximab Treatment (N=5)†
Best overall response — no. (%)				
Complete response	4 (17)	1 (7)	0	3 (60)
Partial response	16 (70)	12 (80)	3 (100)	1 (20)
Stable disease	3 (13)	2 (13)	0	1 (20)
Progressive disease	0	0	0	0
Objective response				
No. of patients	20	13	3	4
Percent of patients (95% CI)	87 (66–97)	87 (60–98)	100 (29–100)	80 (28–99)
Progression-free survival at 24 wk — % (95% CI)‡	86 (62–95)	85 (52–96)	NCJ	80 (20–97)
Overall survival — wk				
Median	NR	NR	NR	NR
Range at data cutoff¶	21–75	21–75	32–55	30–50

Ansell et al. NEJM 2015

Nivolumab in Hodgkin Lymphoma

Ansell et al. NEJM 2015

Pembrolizumab in Hodgkin Lymphoma

© 2018–2019 Society for Immunotherapy of Cancer

Pembrolizumab in Primary Mediastinal Large B cell Lymphoma

Checkpoint Inhibitor Toxicity

- Autoimmune Manifestations
- Colitis
- Hepatitis
- Pneumonitis
- Endocrinopathies
- Skin Rash
- Others

- Management
- Immune suppression
- High-dose steroids
- Mycophenolate or Infliximab

Zinzani et al. Blood 2016

Presentation Outline

- Monoclonal Antibodies
- Checkpoint Inhibitors
 - Nivolumab
 - Pembrolizumab
- BiTE Therapy
 - Blinatumumab

B Cell Malignancies are CD19+

Blanc et al. Clinical Cancer Research 2011

BiTE (Blinatumumab) Therapy

- Combines anti-CD19 F(ab) with anti-CD3 F(ab)
- Lacks the Fc region
- Facilitates T cell engagement with CD19+ tumor cells
- FDA approval: Patients with R/R B cell precursor ALL

Bargou et al. Science 2008

Blinatumomab for B-ALL

Challenges:

- Short half life = continuous infusion
- Hospital admission for 3 days with C1, 2 days with C2
- Toxicity = CRS

Presentation Outline

- Monoclonal Antibodies
- Checkpoint Inhibitors
 - Nivolumab
 - Pembrolizumab
- BiTE Therapy
 - Blinatumumab

- CART Therapies
 - Axicabtagene ciloleucel
 - Tisagenlecleucel
 - Toxicity

<u>Chimeric Antigen Receptor (CAR)</u> T cell Therapy

Modified T-cell infusion 5 Engineering patient T cells to Leukapheresis target and eliminate cells presenting specific antigens V_{L} Antigen binding 4 Chemotherapy (anti-CD19) domain V_H Antibody-coated CD8-alpha hinge beads and transmembrane Bead remova T-cell activation/ transduction^a T cell **Modified T-cell** 4-1BB costimulatory expansion^a domain (Or CD28) CD3-zeta signaling domain Cellular reprogramming and ex vivo expansion are conducted at a cell processing facility

FDA-approved CAR T Cell Therapies for Lymphoma

- Axicabtagene ciloleucel
 - ZUMA-1: Adult patients with R/R large B cell lymphoma after 2+ lines of systemic therapy, including diffuse large B cell lymphoma, high-grade B cell lymphoma, and DLBCL arising from follicular lymphoma
- Tisagenlecleucel
 - JULIET: adult patients with relapsed/refractory large B cell lymphoma including diffuse large B cell lymphoma (DLBCL), high-grade B cell lymphoma and DLBCL arising from follicular lymphoma—after 2+ lines of systemic therapy.

Patient Selection Criteria for CAR T Therapies

- Expression of the desired antigen for CAR T therapy
 - e.g. CD19
- Disease burden
 - CAR T trials: Minimize the risk of cytokine release syndrome
- Presence of co-morbidities
 - e.g. Presence of active autoimmune diseases which could be worsened

Axicabtagene ciloleucel in B Cell Lymphoma Overall Survival

Axicabtagene ciloleucel in B Cell Lymphoma Duration of Response

Tisagenlecleucel in B Cell Lymphoma Overall Survival

Schuster et al. NEJM 2017

Tisagenlecleucel in B Cell Lymphoma Duration of Response

Schuster et al. NEJM 2017

FDA-approved CAR T Cell Therapies for Acute Leukemia Tisagenlecleucel

• ELIANA: patients up to age 25 years with B-cell precursor acute lymphoblastic leukemia (ALL) that is refractory or in second or later relapse

<u>Cytokine</u> <u>Release</u> <u>Syndrome</u> (CRS)

Association of Community Cancer Center

CRS management

 Tocilizumab GRADING ASSESSMENT TREATMENT Monoclonal antibody Grade 1 CRS Vigilant supportive care that blocks IL-6 signaling Fever, constitutional Assess for infection (Treat fever and neutropenia if present, symptoms monitor fluid balance, antipyretics. analgesics as needed) Grade 2 CRS 3000-Extensive Hypotension: responds to fluids 2500co-morbidities or one low dose pressor 2000or older age? No Hypoxia: responds to <40% O₂ Vigilant supportive care 1500-Organ toxicity: grade 2 (Monitor cardiac and other organ 1000pg/mL function closely) 500 500 /es Grade 3 CRS Hypotension: requires multiple 400pressors or high dose pressors Vigilant supportive care 300-Hypoxia: requires ≥ 40% O2 Tocilizumab 200-Organ toxicity: grade 3, grade 4 ± corticosteroids 100transaminitis 10 12 14 2 4 8 0 Grade 4 CRS Mechanical ventilation Tocilizumab Organ toxicity: grade 4,

Day after T Cell Infusion

-300

-250

-200 꺾

150 mg/

(<3 mg/L

100

-100

-80 -60

-40

-20

30

- IL-6

- IFN-y

- Other

20

- CRP

Lee et al. Blood 2014

excluding transaminitis

Presentation Outline

- Monoclonal Antibodies
- Checkpoint Inhibitors
 - Nivolumab
 - Pembrolizumab
- BiTE Therapy
 - Blinatumumab

- CART Therapies
 - Axicabtagene ciloleucel
 - Tisagenlecleucel
 - Toxicity
- Future Indications for Immunotherapy
 - Multiple Myeloma

Immunotherapies for Multiple Myeloma

- No approved checkpoint inhibitors
 - KEYNOTE-183/185/023: Halted or discontinued due to risk/benefit profile
- Vaccine-based approaches
 - Non-antigen Specific
 - Attenuated measles
 - Whole cell FM-CSF
 - Dendritic tumor fusions
 - Antigen Specific
 - Idiotype: RNA < DNA, protein
 - Pulsed dendritic cells
 - Tumor-specific peptides

In Development: BCMA+ CAR T Therapy for Myeloma

- bb2121
 - B cell maturation antigen (BCMA)
 - Phase I CRB-401 study
 - Previously treated patients with relapsed/refractory multiple myeloma

Further Resources

Boyiadzis et al. Journal for ImmunoTherapy of Cancer (2016) 4:90 DOI 10.1186/s40425-016-0188-z

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

CrossMark

The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of hematologic malignancies: multiple myeloma, lymphoma, and acute leukemia

Michael Boyiadzis^{1†}, Michael R. Bishop^{2†}, Rafat Abonour³, Kenneth C. Anderson⁴, Stephen M. Ansell⁵, David Avigan⁶, Lisa Barbarotta⁷, Austin John Barrett⁸, Koen Van Besien⁹, P. Leif Bergsagel¹⁰, Ivan Borrello¹¹, Joshua Brody¹², Jill Brufsky¹³, Mitchell Cairo¹⁴, Ajai Chari¹², Adam Cohen¹⁵, Jorge Cortes¹⁶, Stephen J. Forman¹⁷, Jonathan W. Friedberg¹⁸, Ephraim J. Fuchs¹⁹, Steven D. Gore²⁰, Sundar Jagannath¹², Brad S. Kahl²¹, Justin Kline²², James N. Kochenderfer²³, Larry W. Kwak²⁴, Ronald Levy²⁵, Marcos de Lima²⁶, Mark R. Litzow²⁷, Anuj Mahindra²⁸, Jeffrey Miller²⁹, Nikhil C. Munshi³⁰, Robert Z. Orlowski³¹, John M. Pagel³², David L. Porter³³, Stephen J. Russell⁵, Karl Schwartz³⁴, Margaret A. Shipp³⁵, David Siegel³⁶, Richard M. Stone⁴, Martin S. Tallman³⁷, John M. Timmerman³⁸, Frits Van Rhee³⁹, Edmund K. Waller⁴⁰, Ann Welsh⁴¹, Michael Werner⁴², Peter H. Wiernik⁴³

Presentation Outline

- Monoclonal Antibodies
- Checkpoint Inhibitors
 - Nivolumab
 - Pembrolizumab
- BiTE Therapy
 - Blinatumumab

- CART Therapies
 - Axicabtagene ciloleucel
 - Tisagenlecleucel
 - Toxicity
- Future Indications for Immunotherapy
 - Multiple Myeloma

Case Study 1

- 72M with follicular lymphoma originally diagnosed in 1993 and underwent: CHOP x 6, zevalin, fludarabine x 6, BR x 6, and multiple courses of rituximab
- Transformed to DLBCL and underwent: GemOx x 2, lenalidomide with no response
- Received one dose of nivolumab (off-label indication)
- Presented one week later with: fever, SOB, and skin rash
 - CXR normal, CT chest with diffuse ground glass opacities
 - Skin biopsy with "interface dermatitis with epidermal necrosis"
- What happened?

- Rash:
 - 30-40% have derm complications with nivolumab
- Pneumonitis
 - ~5% develop pneumonitis
- What are next steps?
 - Hold further nivolumab
 - Steroids (0.5mg/kg prednisone)

Case Study 1

- Due to hypoxia- Patient admitted for observation
- Next day: Diffuse purple blistering rash, severe mucositis, conjunctivitis
- Consistent with Steven's Johnson syndrome (rare complication)
- What is the next step?
 - Increased steroids to methylprednisolone at 2mg/kg/day
- Did not improve after 3 days, what's next?
 - Infliximab 5mg/kg
 - Unique to this patient: Amniotic membrane transplants, feeding tube

- Slow clinical improvement
- Discharged after a one month hospital stay on prednisone taper
- Returned one month later with sepsis related to pneumonia
- Transitioned to hospice and passed away
- Lessons learned:
 - Many
 - Checkpoint inhibitors are not benign drugs!
 - Even one dose can cause severe and life-threatening adverse effects!
 - Counsel patients and monitor closely

Case study 2

- 49M with DLBCL who was refractory to RCHOP, RDHAP, Nivolumab (off-label indication) presented with enlarging left groin node.
- Referred for CAR-T therapy and received CAR-T infusion on Day 0:
- Day 1 Fevers grade 1 CRS
- Day 2 Hypotension transferred to ICU
- Day 5 Resolution of fevers and hypotension
- Day 6 Mild confusion with waxing and waning mental status and significant headache – Grade 2 neurotoxicity
- What is the next step?
 - Dexamethasone 10mg IV q 6 hr

Case study 2

- Day 7 No improvement of neurological symptoms after 24 hours change to methylprednisolone 1mg/kg/day
- Day 8 Worsened to grade 3 NT with disorientation and combative behavior, anomic aphasia
- What is the next step?
 - Siltuximab 11mg/kg (off label use)
- Day 12 Rapid improvement of mental status to grade 1
- Day 13 Complete resolution of all neurologic symptoms
- Day 14 Discharged from the hospital with a rapid steroid taper

Case study 2

- Timing of adverse events post CART:
- No clear consensus on management of severe neurotoxicity
- Theoretical concern that tociluzumab may block IL6 receptors and cause a flare of IL6 levels
- Siltuximab blocks IL6 directly, so may be a good choice in this setting.

Multiple Myeloma

sitc

Society for Immunotherapy of Cance

© 2018–2019 Society for Immunon Cancer

CLL/SLL

Phase I

Monotherapy

JCAR+ibrutinib Cohort

monotherapy dose

Open to pts on

progressing or on

with <CR at 6 mos

ibrutinib and

Based on

•

•

JCAR017

JCAR + ibrutinib

Eligibility:

- CLL/SLL
- Failed/intolerant ibrutinib
- High-risk: > 2 prior
- Standard risk: > 3 prior

Status: OPEN to enrollment

Questions?

Co-Directors: CAR-T Program

Dr. Deborah Stephens (deborah.stephens@hci.utah.edu) Dr. Catherine Lee (catherine.lee@hci.utah.edu)

Referrals: (801) 587-4652 Christopher.moss@hci.Utah.edu

