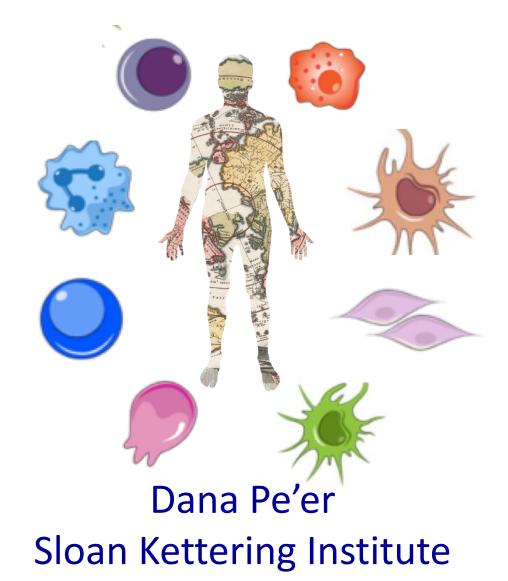
An atlas of the tumor immune ecosystem



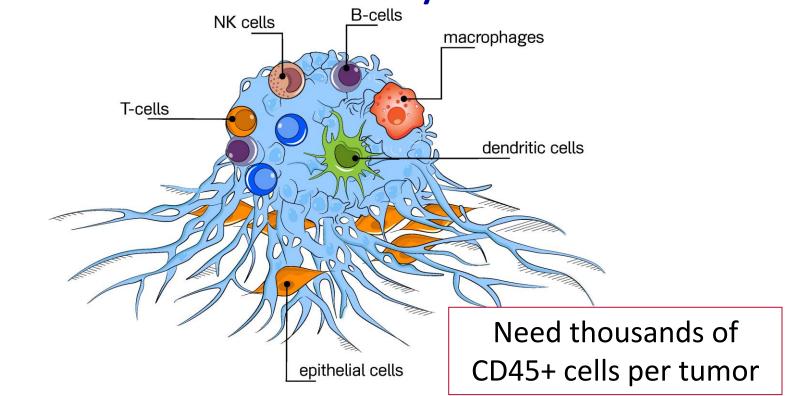
Disclosure slide

- The speaker discloses that she is a strongly opinionated person.
- However, these strong opinions are not driven by any financial interests, but rather her scientific passion.

A Human Cell Atlas

- Our genes are well mapped, but most of cell types remain unknown
- Cells are basic biological units
- Diseases are caused by malfunction of specific cell types.
- Goal: Construct a comprehensive map of all cell types in our body

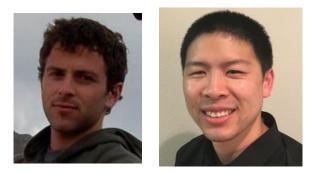
Tumor Eco-system



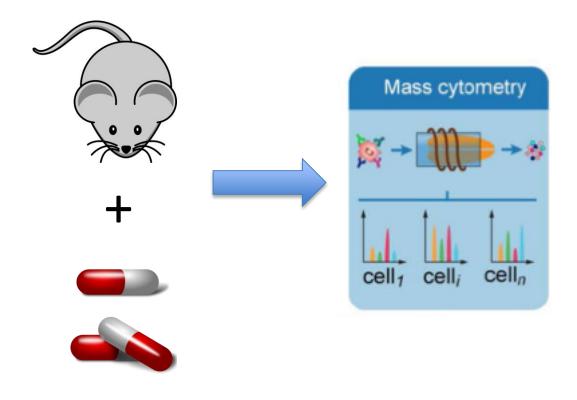
- Goal: Characterize sub-populations in tumor immune ecosystem.
- Challenge: Substantial unknown diversity.
- A better understanding of tumor immune eco-system will aid the development strategies to activate it against the tumor.

With Allison lab, MD anderson Understanding response to immunotherapy

Spencer Wei Jacob Levine Jim Allison

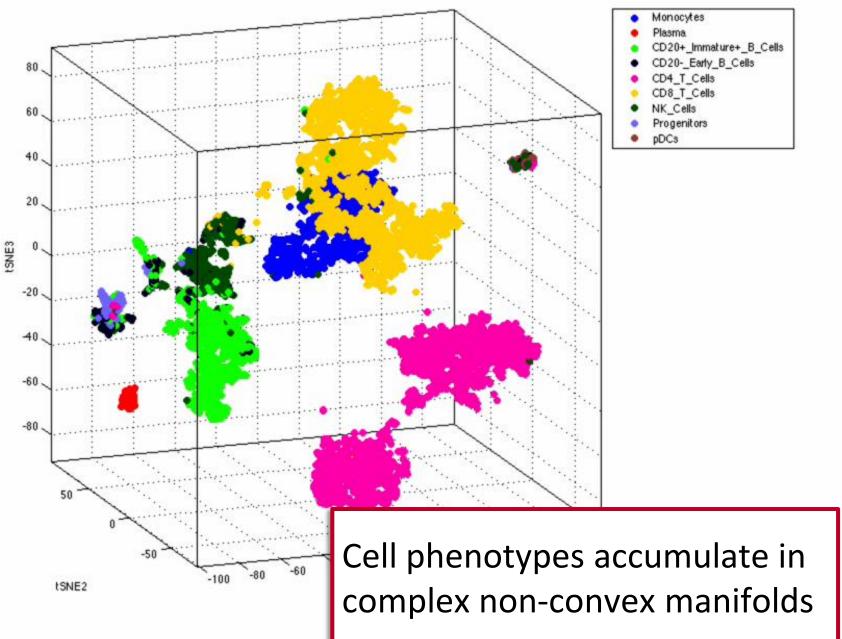


Data Collection

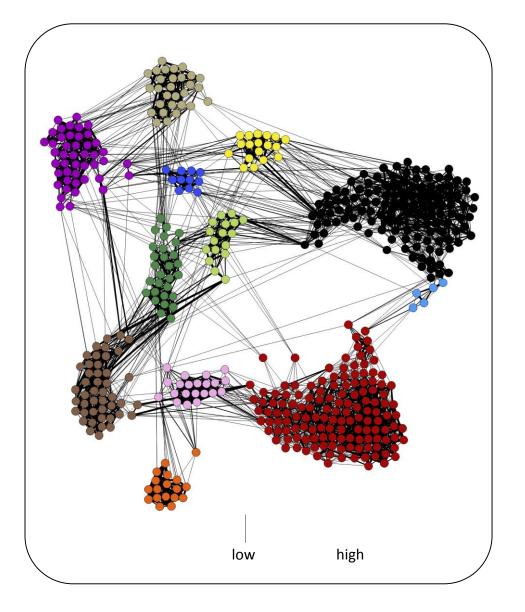


- Measured response to anti-PD1 and anti-CTLA4
- Measured immunogenic MC38 colorectal tumors and the poorly immunogenic B16BL6 melanoma mode
- 33 surface and 10 intracellular markers: Cell type(e.g. CD8, CD4, CD11b, CD19), T cell differentiation and activation markers (e.g. PD-1, ICOS, TIM3, KLRG1, CD127), T cell lineage transcription factors (e.g. T-BET, EOMES, GATA3, BCL6).

viSNE map of healthy bone-marrow

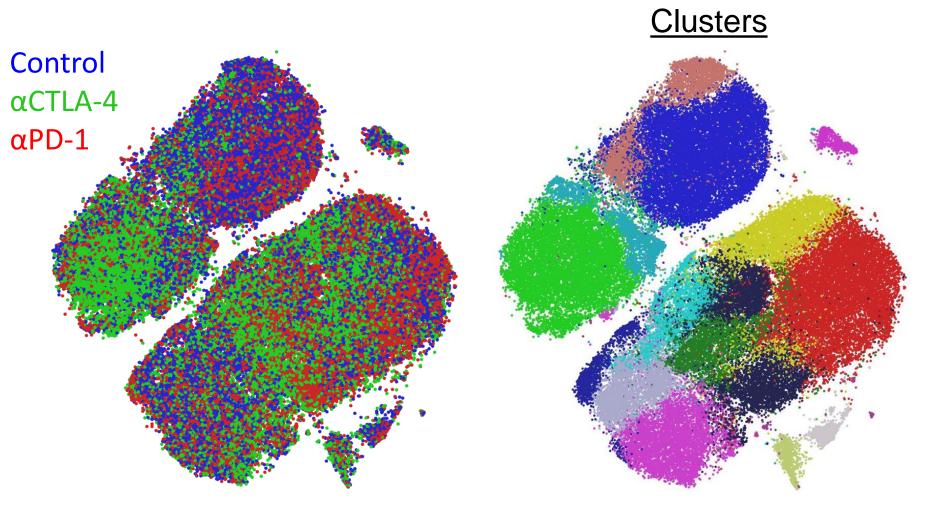


PhenoGraph: graph for single-cell phenotypes



- Each node is a cell
- Each cell is connected to a neighborhood of "similar" cells
- Key to graph construction is a good distance measure:
- We use methods derived from social networks

MC38 tumor infiltrating T cell subsets



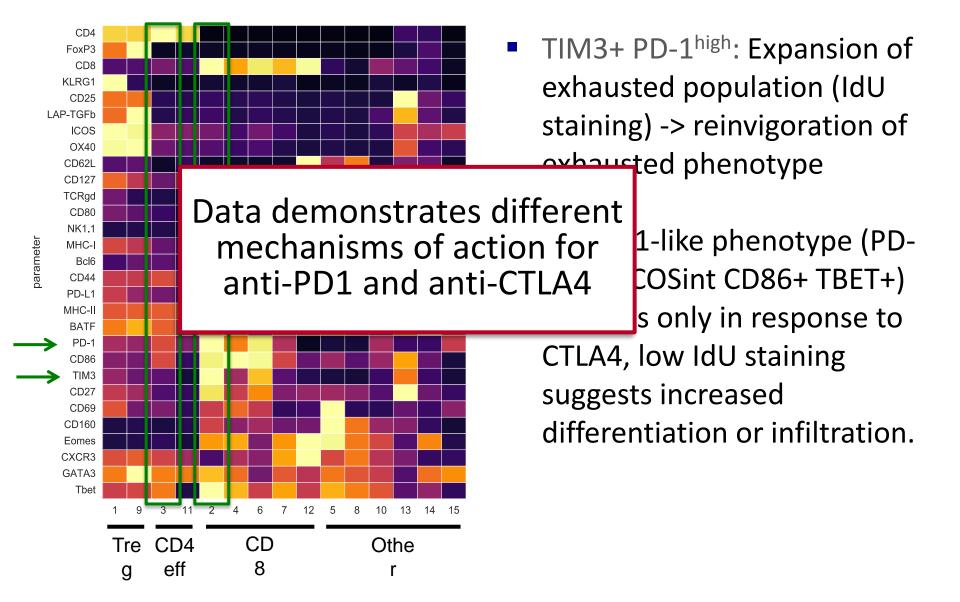
 15 distinct tumor infiltrating T cell clusters found

Population dynamics in response to therapy

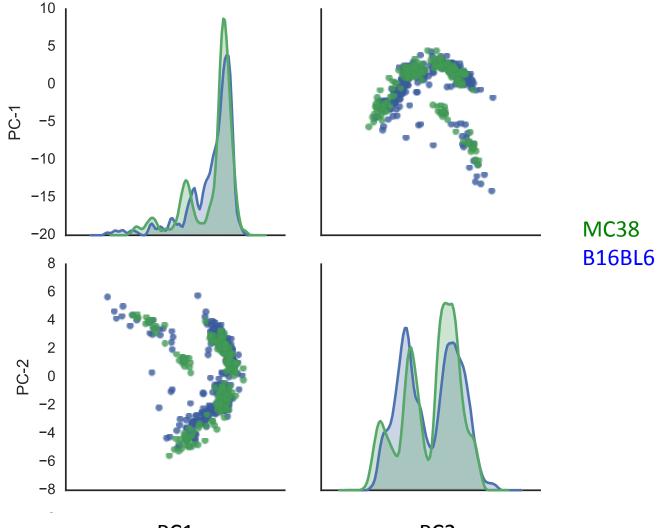


- CD8 expanded following both therapies, but not all CD8 clusters expanded equally
- Expansion of CD4 phenotype only in response to CTLA-4, but does not change after PD-1

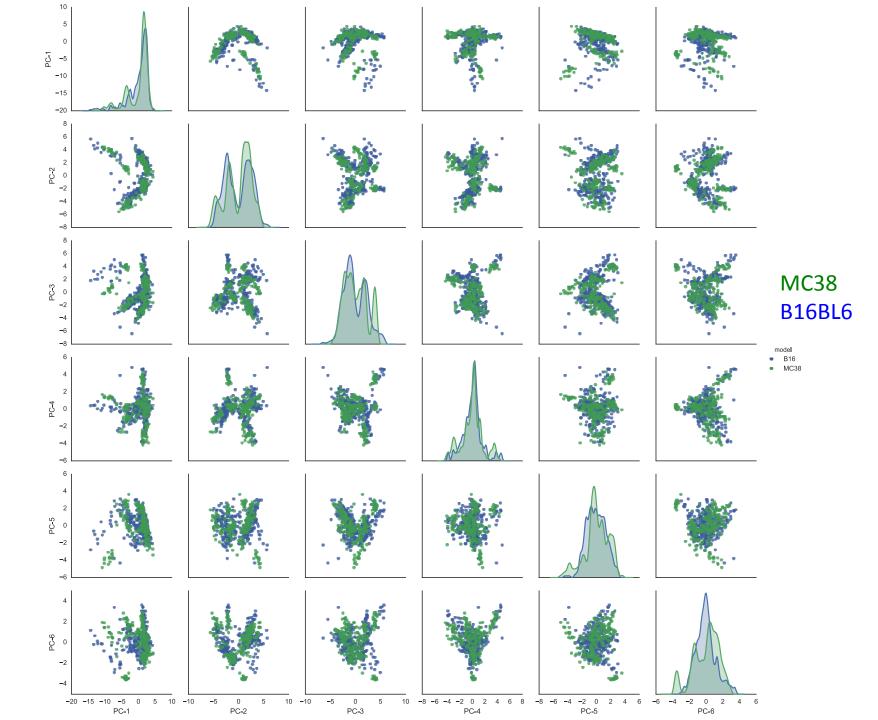
MC38 infiltrating T cell populations

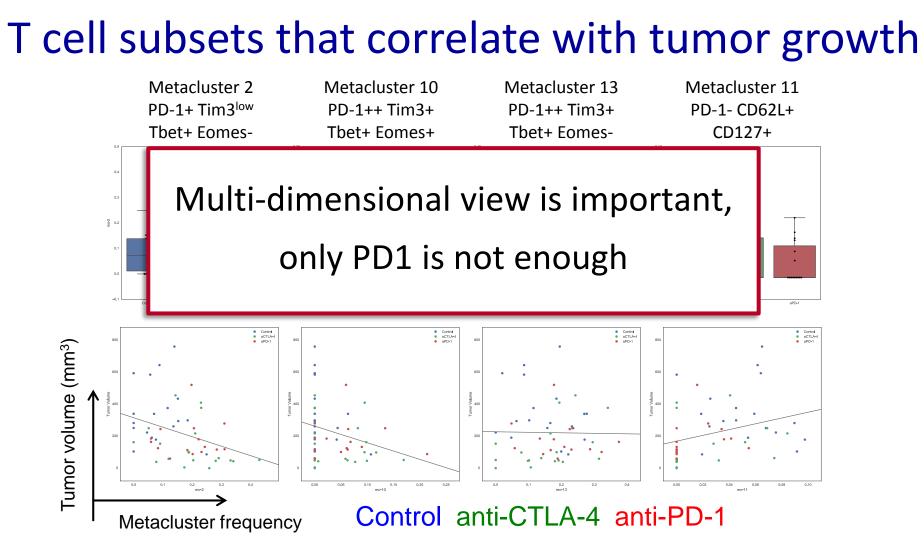


MC38 and B16BL6 infiltrating T cell populations are strikingly similar



PC2



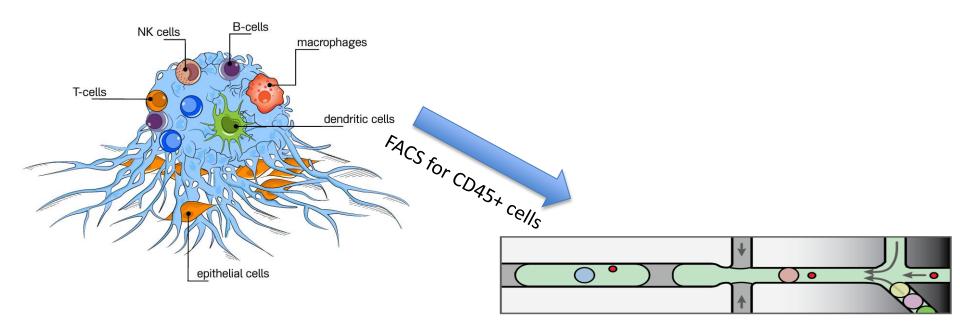


- Only 2 CD8+ populations correlated negatively with tumor growth.
- Subtle multivariate phenotypic differences, distinguish T cell populations with dramatic functional differences

Breast Cancer Immune Cell Atlas

Ambrose Carr Elham Azizi George Piltas Linas Mazutis Andrew Cornish Kasia Konopacki Sasha Rudensky

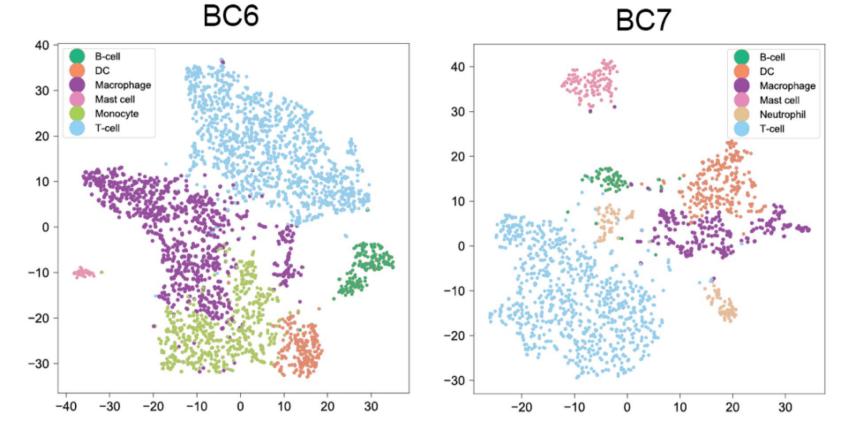
In-drop characterization of tumor immune cells in breast cancer



Data-Driven approach: > 3000-10,000 CD45+ collected per tumor

What is the immune states and the structure of the tumor immune ecosystem?

PhenoGraph Clustering



- PhenoGraph found all major immune subtypes in each tumor
- Each tumor is very different

What happens when we compare immune ecosystems across patients?

breast tumors

the map are

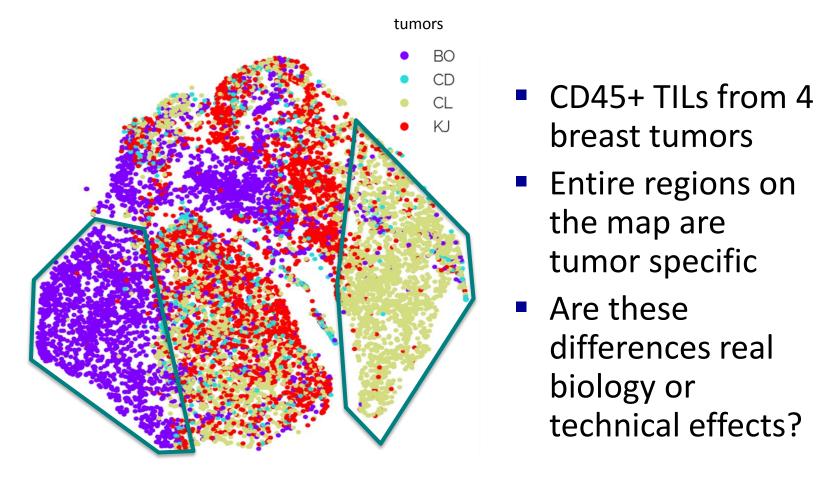
tumor specific

differences real

technical effects?

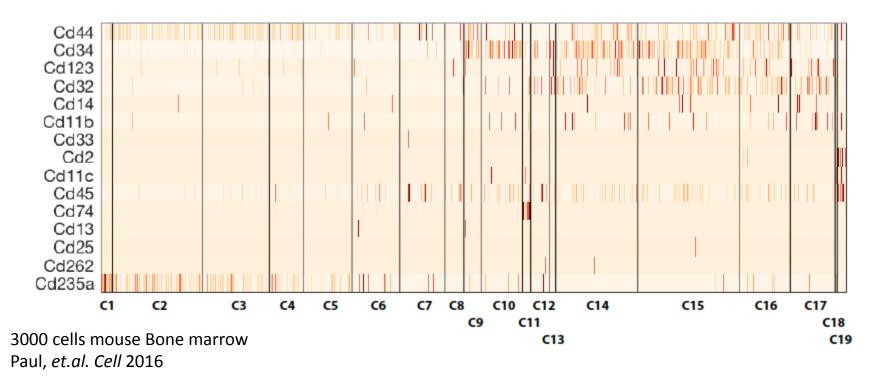
biology or

Entire regions on



tSNE 2D projection

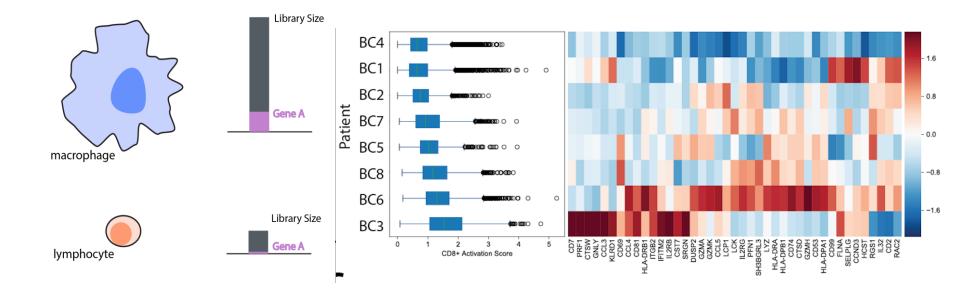
Single-Cell RNAseq data is Sparse



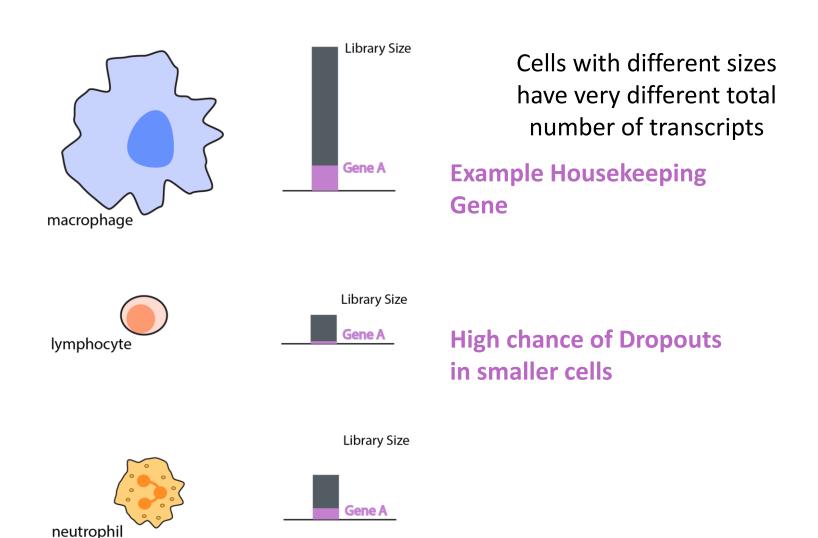
- Surface markers used for gating typically have very low RNAlevels and are poorly captured in most immune cells.
- For example: Monocyte clusters have
 - 1.6% cells expressing CD14
 - 5.8% cells expressing CD11b

There are strong batch effects with and between samples

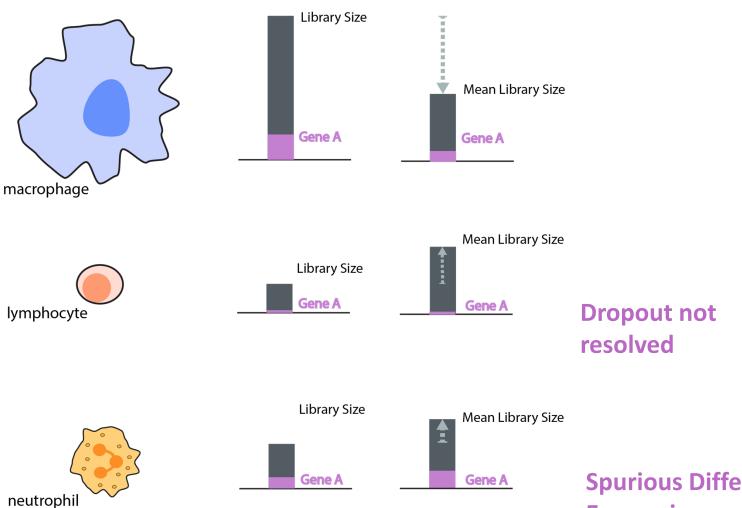
- There is a huge variation of transcripts captured per cell, a wide distribution within a sample, and distinctly different distributions between samples.
- The differences convolute both biological and technical reasons



Problem with Global Normalization



Problem with Global Normalization

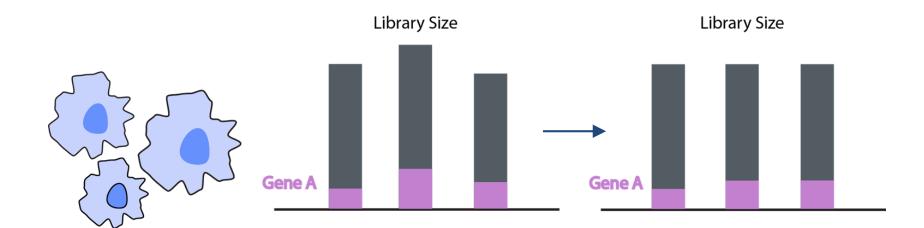


After Normalization

Spurious Differential Expression

Idea: Different normalization for each cell type

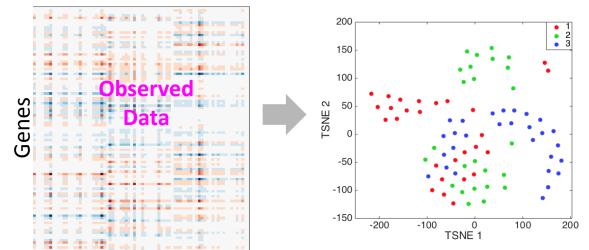
After Normalization



Problem: We don't know cell types

Need to infer cell clusters

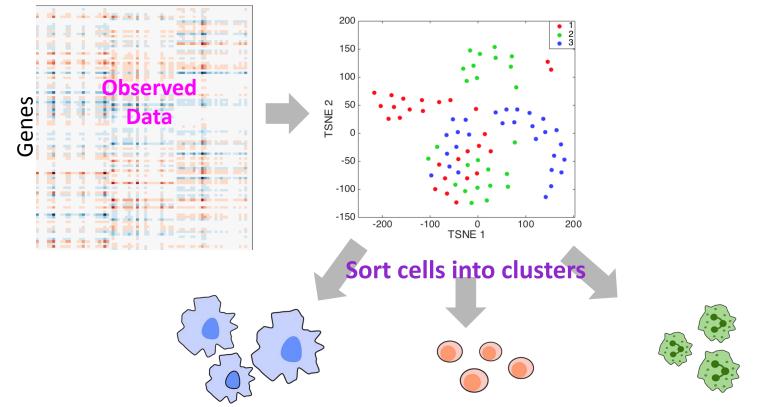
Cells



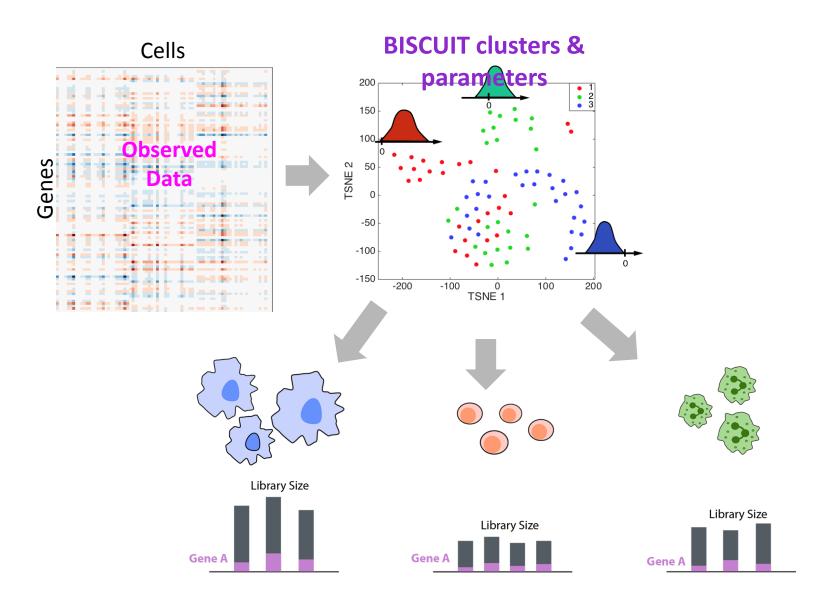
Prabhakaran, Azizi, ICML 2016

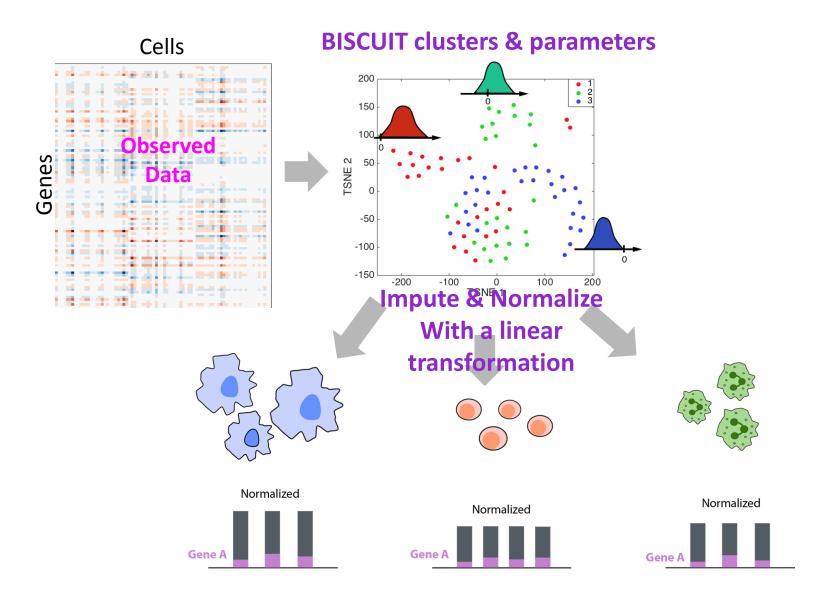
Cells

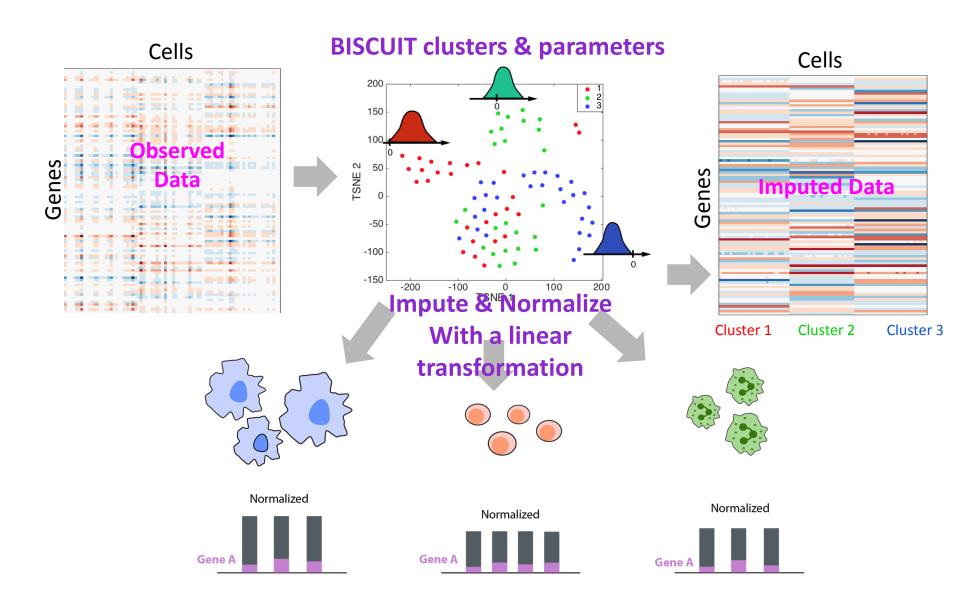
BISCUIT clusters



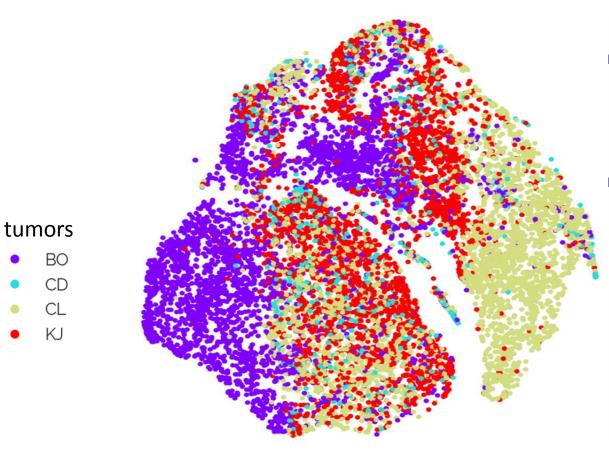
Prabhakaran, Azizi, ICML 2016







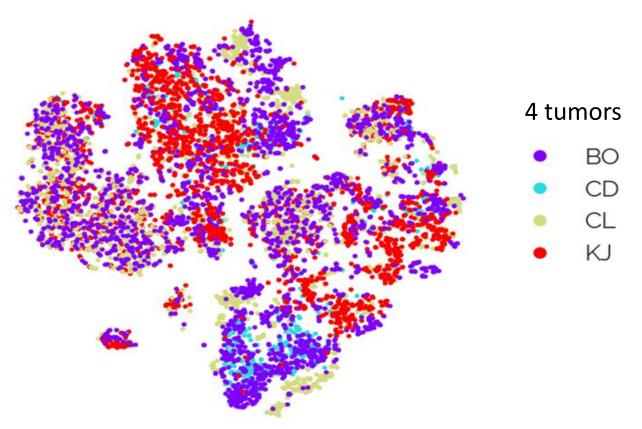
Reminder: Breast TIL data before Biscuit

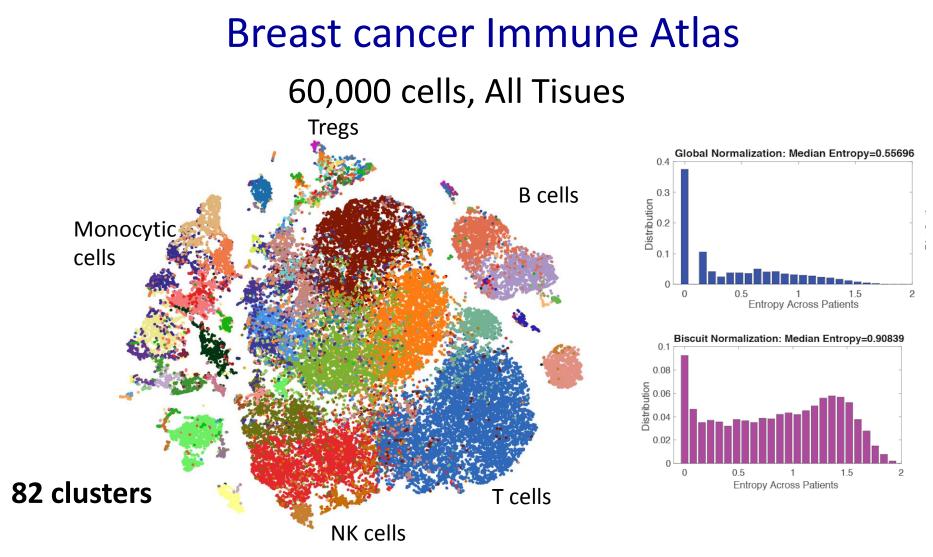


- Skews data, nonoverlapping cells across tumors
- Unclear structure of cell types, mostly distinguishes myeloid from lymphoid cells

Breast cancer TIL data after Biscuit

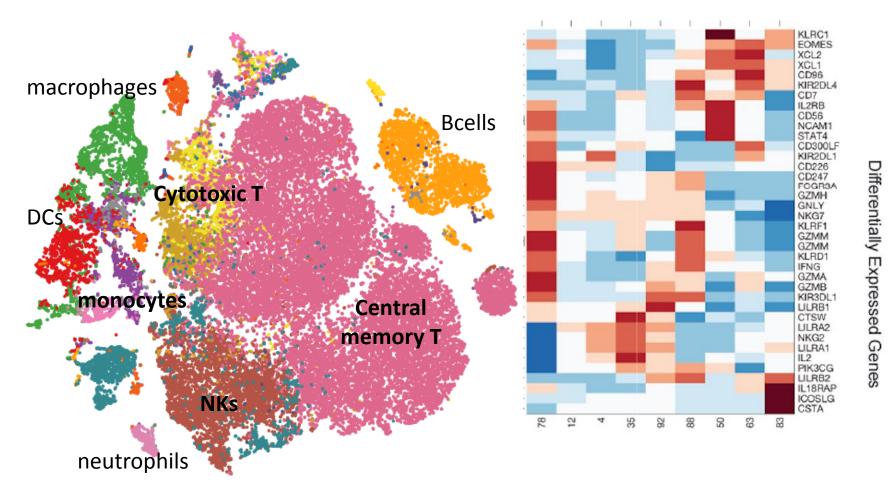
12,000 Cells, ~2500 molecules per cell





- 8 patients collected from tumor and normal (prophylactic mastectomies) tissue, peripheral blood and lymph-node.
- Entropy confirms mixing of samples
- Clusters are robust

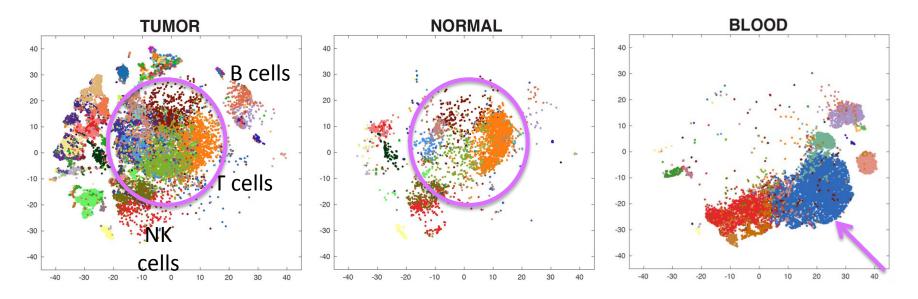
Annotation of the Atlas



- 36 T-cell clusters9 NK clusters
- Bulk gene signatures can help explain clusters.
 Each cluster has a distinct set of differentially expressed genes

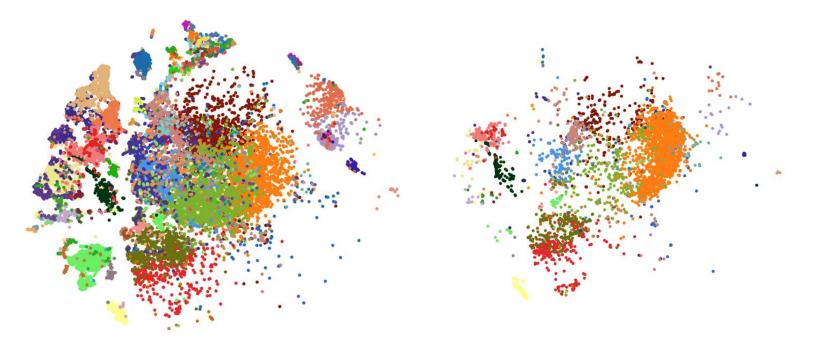
How does the tissue environment influence the immune ecosystem?

Tissue Contribution



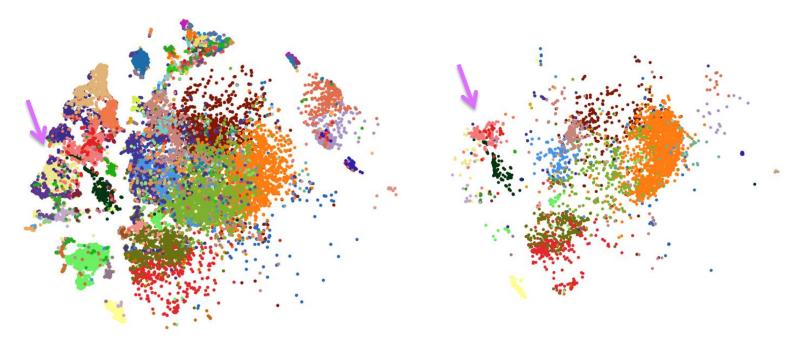
- Tumor and tissue have similar T-cells
- Blood T-cells are completely different
 - Blood has more naïve characteristics)
- B-cells largely overlap (across tissues and individuals)

Tissue Contribution



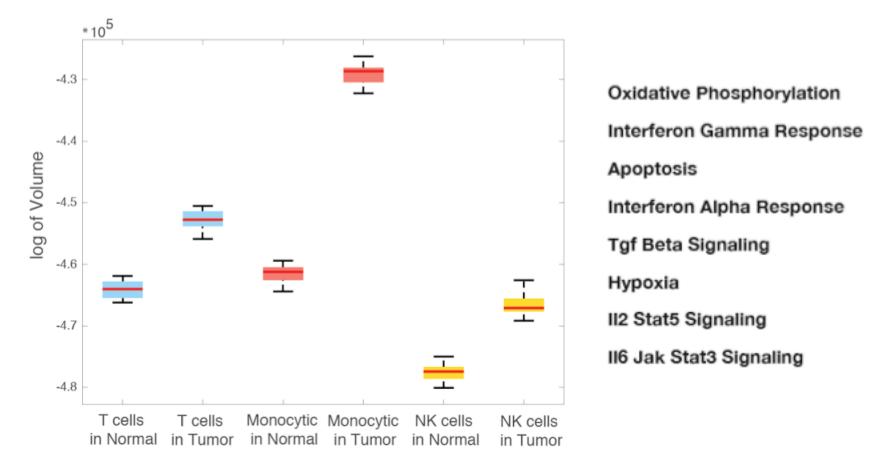
- I9 T-cell clusters shared between tumor and breast-tissue
- 17 T-cell clusters unique to tumor are more activated and more cytotoxic
- 5 T-regs subsets unique to tumor (differ between patients)

Tissue Contribution



- I3 myeloid clusters shared between tumor and breast-tissue
- 14 myeloid clusters unique to tumor are more activated
- 3 TAM subsets unique to tumor (differ between patients)

Tumor infiltrating immune cells explore a more diverse phenotypic space

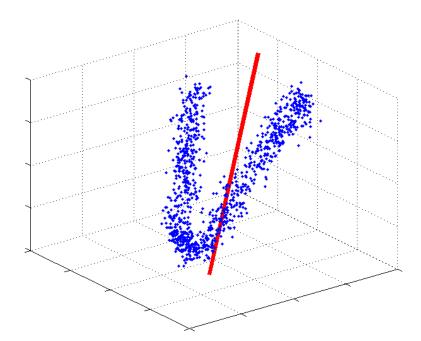


 The tumor environment substantially expands the diversity of observed cell states. What happens to T-cells when they enter the tissue environment?

Markov Eigen vectors follow the manifold

PCA

Diffusion maps

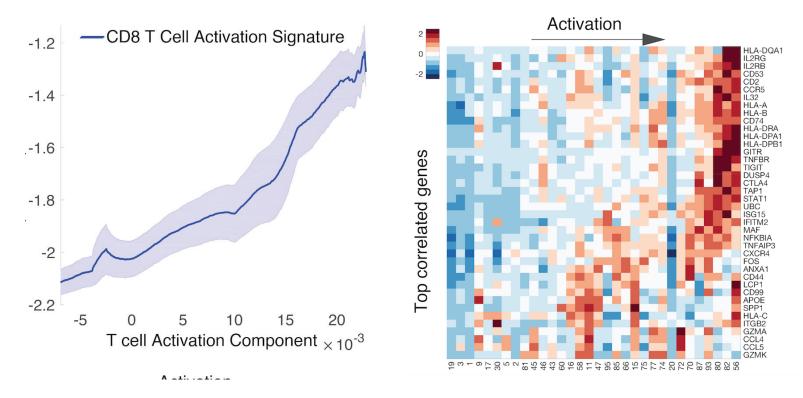


Linear direction of variation

Trajectory through the manifold

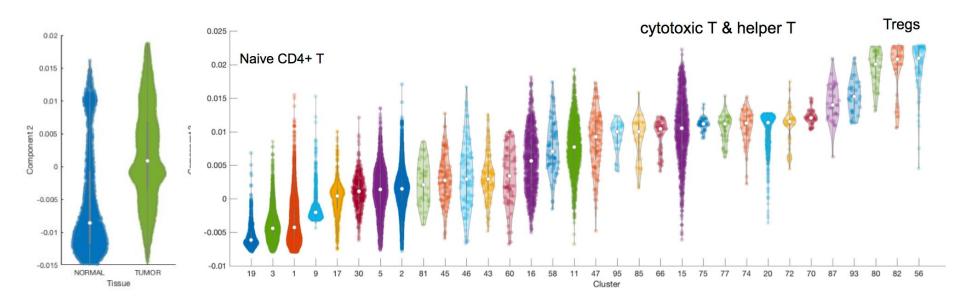
Diffusion maps are a "non-linear" version of PCA that follows the data density

T-cell activation first diffusion component in lymphocytes



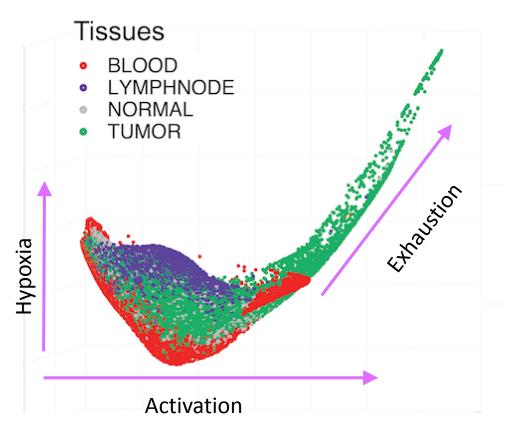
- First diffusion component that explains most of variation is T cell activation
- Enriched for cytokine production & signaling, lymphocyte activation, leukocyte differentiation, ligand receptor interaction

Ordering of clusters based on activation state



- Comparing distribution of cells along the component between tumor and normal shows tumor is more activated.
- Plotting clusters along diffusion component provides an ordering of "activation status" for these clusters.
- Phenotypic space has a gradual rather than a discrete nature

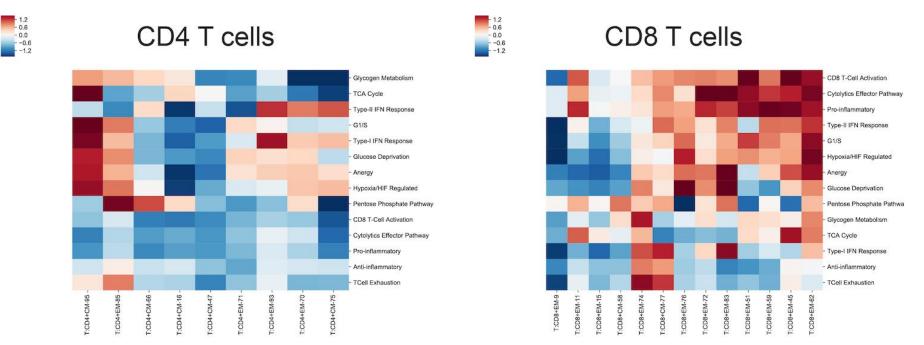
T-cell phenotypic space is continuous



- T-cells define a continuum of states
- Most of the variation can be captured by a few axes of variation
- Tissue context plays a big role!

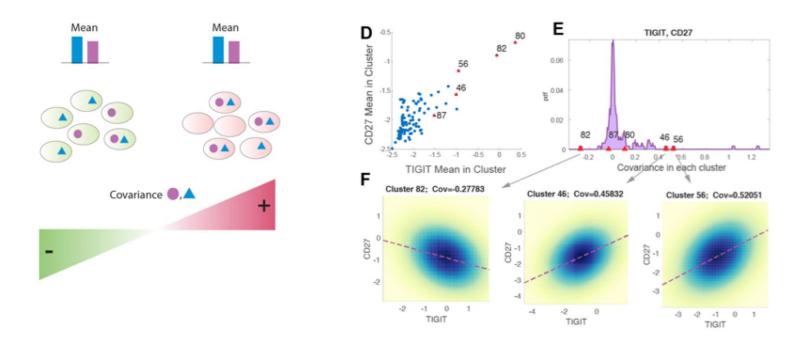
So what defines the clusters?

Tissue resident cells experience combinations of environmental conditions



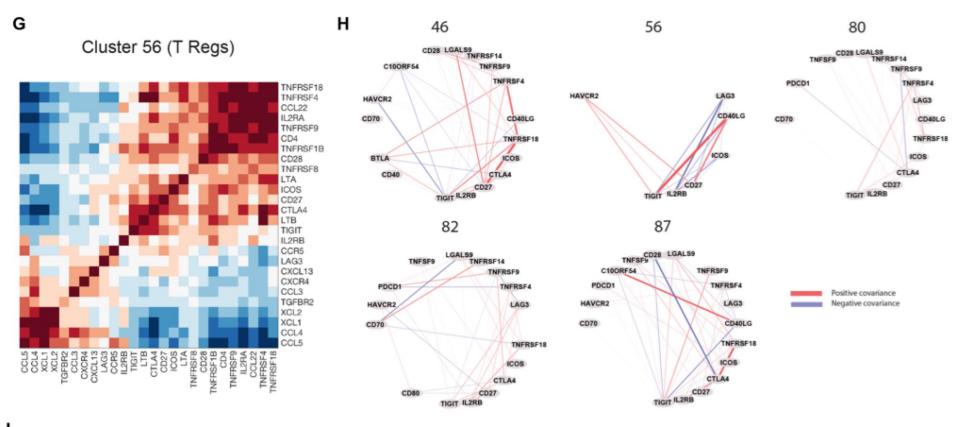
- While the strongest components of variation are a few gradual axes of activation, differentiation, hypoxia, glucose starvation
- Each cell experiences a different combination of these, creating discrete clustering

Co-variation drives the clustering



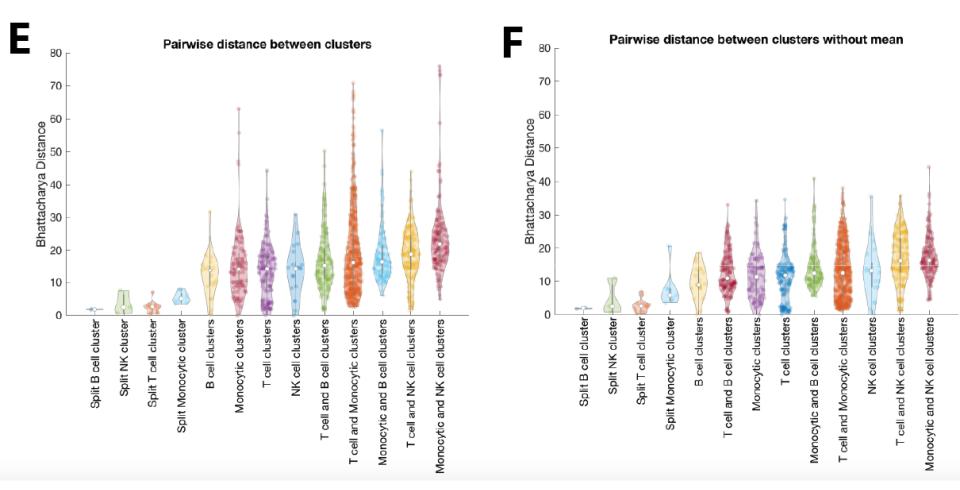
- TIGIT and CD27 are highest in the 5 T-reg clusters
- However they have substantial variation in the co-variation between them

Co-variation drives the clustering



- T-reg clusters have similar "mean" expression profiles
- T-reg clusters are very diverse in their co-variation patterns involving key immune receptors and drug targets

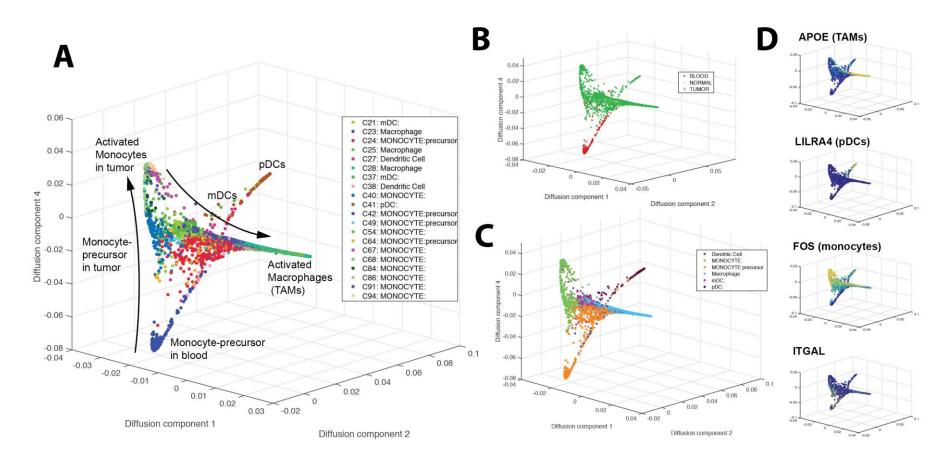
Co-variation drives the clustering



Even after means are normalized, distances largely remain

What happens to monocytic cells when they enter the tissue environment?

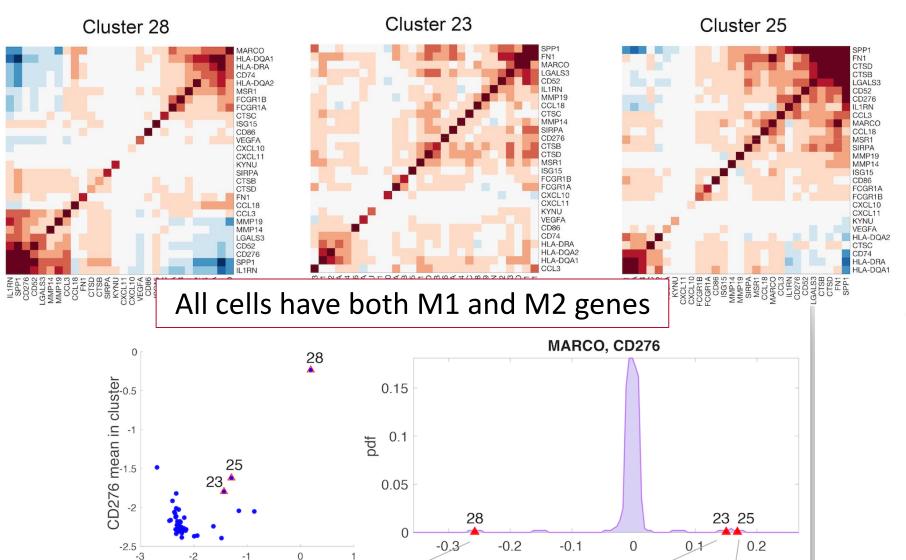
Activation and Differentiation Axes in Tumor Immune Atlas



 A large diversity of monocytic cells organize onto distinct axes of differentiation as they change environment / tissue context

Co-variation drives the Myeloid clusters

3 TAM clusters



MARCO mean in cluster

Covariance in clusters

Acknowledgements

Ambrose Carr

Elham Azizi

Andrew Cornish

Jacob Levine

Manu Setty

Linas Mazutis

Sandhya Prahabakaran

Josh Nainys

Vaidas Kiseliovas

<u>Jim Alison (MD-Anderson)</u> Spencer Wei

Sasha Rudensky (MSKCC)

George Plitas Casia Konopac

NIH DIRECTOR'S NEW INNOVATOR AWARE

Patients