SITC 2015

Other Topics in Biomarkers Discussion

- Moderator: Adrian Bot, MD, PhD Kite Pharma, Inc.
- Blood-Based Markers: Michael D. Kalos, PhD Eli Lilly and Company
- Tissue Markers: Naiyer Rizvi, MD Columbia University Medical Center

Blood-based Biomarkers in Immuno-oncology

Michael Kalos, PhD
Chief Scientific Officer, Cancer Immunobiology
Eli Lilly and Company

SITC annual meeting Biomarker debate November 8, 2015, Bethesda, MD

Company Confidential
© 2014 Eli Lilly and Company

COI Disclosure Information

I have the following relevant financial relationships to disclose:

- Patents and potential royalties from Novartis Pharmaceuticals-CAR technology
- Scientific Advisory Board member (stock grants) for Adaptive Biotechnologies (ex)
- Eli Lilly and Company- Employment (current)

Biomarkers Drive The Translational and Clinical Research Engine

Biological effects from in -vitro and in-vivo models

 Pharmacodynamic and biophysical characteristics of molecule

- Patient genetics and biology, clinical measurements
- Clinical correlative studies

- > Understand tailoring
- Understand pharmacodynamics, activity, and toxicity
- > Understand MOA and efficacy
- > Develop surrogate endpoints

Critical issues in Biomarker research

Our ability to define and implement appropriate hypothesis focused biomarker and tailoring strategies is compromised by our lack of a comprehensive understanding of the biological effects of the therapeutic agents on the immune system and the tumor milieu. Accordingly, *hypothesis testing alone is inadequate as a strategy*

To develop appropriate and relevant tailoring strategies it is imperative to build infrastructure and commit to support:

- Robust sampling strategies, including biopsy tissues
- Comprehensiveness- hypothesis generating science
- Objective Quality
- Integrated and systematic meta-analysis

Biomarker strategies in the 21st century

Comprehensive biomarker strategy required to enable mechanistic insights to guide rational clinical development

> Temporal kinetics of activity must be captured

Tissue

Pre- post-

High throughput molecular and image-based analyses

What is the value for blood-based biomarkers in Immuno-oncology?

Reasonably well-established that a principle site for biomarker interrogation is the tumor: "Where the action is"

Beyond studying blood-borne cancers, what can blood-based analyses tell us in immunooncology?

Blood-based testing can inform about:

- > Systemic consequences of activity at tumor site
- > Temporal modulation of subsets of relevant cells
- Pharmacodynamic measures of drug half-life and activity

High-throughput and comprehensive platforms to evaluate blood-based biomarkers

Potential samples and available platforms

- Whole blood:
 - > Flow cytometry, biochemical and biophysical platforms
- Isolated cell subsets:
 - Flow cytometry
- Plasma/serum:
 - Luminex, mesoscale, protoarray
- Nucleic acid:
 - Nanostring, quantigene, whole-exome sequencing, TCR sequencing
- Circulating tumor cells:
 - > Flow cytometry, nucleic acid-based
- Subcellular particles (exosomes, etc.):
 - > Molecular characterization

Categories and attributes of T cell biomarkers

Category`	<u>Platforms</u>	Assay	Advantages	<u>Disadvantages</u>
Presence	Flow cytometry	Surface marker detection	Individual cells detected	Sample intensive Low sensitivity Specific detection reagent
	PCR	Transgene-specific amplification	High sensitivity	Bulk analysis
	Deep sequencing	Detection of specific TcR clonotypes	Extremely high sensitivity	Technology intensive

Multiparameter bead array (Luminex)

- Advantages:
 - ✓ High on the comprehensiveness scale
 - ✓ Minimal sample volumes required
 - ✓ Robust and quantitative platform
- Applications
 - Soluble factors
 - > Phosphoproteins
 - > Nucleic acid

Multiplex cytokine analysis reveals unpredicted patterns of systemic cytokine modulation in models systems

Agnostic cytokine analysis reveals unexpected elevations in IL-6 and drives development of a new treatment paradigm

On-Target Delayed Cytokine Release Syndrome following CART-19 therapy is mitigated by anti IL-6 therapy

Seromics- Invitrogen Protoarray

- Over 10,000 full-length human proteins displayed on array chip
- Proteins expressed by baculovirus expression system as GST fusions
- Proteins are purified under non-denaturing conditions and printed to preserve native protein structure
- Arrays probed with sera from patients to identify autoantibodies that develop during treatment

Protoarray analysis provides evidence for epitope spreading following CART therapy

Seromics: Protoarray analysis of serum samples from pancreatic cancer patient against 10,000 human proteins

			Pre-	day±44	
Database ID	Ultimate ORF ID	Description	Intensity	Intensity	Ratio post/pre
BC003548.1	IOH4864	polymerase (DNA directed), lambda (POLL)	564	62,437	110.70
NM_015129.3	IOH27517	septin 6 (SEPT6), transcript variant II	431	28,447	66.08
NM_003677.3	IOH56971	Density-regulated protein	431	18,521	43.02
NM_145802.1	IOH14040	septin 6 (SEPT6), transcript variant V	431	12,692	29.48
NM_033003.1	IOH5665	general transcription factor II, i (GTF2I), transcript variant 4	654	18,769	28.70
NM_053031.2	IOH59941	Myosin light chain kinase, smooth muscle	430	10,117	23.50
NM_015927.2		transforming growth factor beta 1 induced transcript 1 (TGFB1I1), transcript variant 2	687	15,098	21.98
NM_000431.1	IOH10122	Mevalonate kinase	2,517	49,352	19.61
NM_003315.1	IOH14566	DnaJ (Hsp40) homolog, subfamily C, member 7 (DNAJC7)	430	7,733	17.96
NM_006759.3	IOH26550	UDP-glucose pyrophosphorylase 2 (UGP2), transcript variant 1	697	12,385	17.78
XM_376764.2	IOH40703	paraneoplastic antigen MA2 (PNMA2)	1,759	27,277	15.51
NM_016954.2	IOH46151	T-box 22 (TBX22), transcript variant 2	430	6,653	15.45
BC012899.1	IOH11155	sialidase 4 (NEU4)	636	9,721	15.28
BC036846.1	IOH28739	protease, serine, 33 (PRSS33)	899	13,007	14.48
BC007637.1	IOH6973	chromosome 1 open reading frame 94 (C1orf94)	950	10,953	11.54
NM_024825.2		podocan-like 1, mRNA (cDNA clone MGC:71618 IMAGE:30347370), complete cds	430	4,865	11.30
BC000525.1		glutamic-oxaloacetic transaminase 2, mitochondrial (aspartate aminotransferase 2) (GOT2)	6,105	62,995	10.47
BC007560.1	IOH6825	LIM and SH3 protein 1 (LASP1)	431	4,295	10.00

Immune cell diversity profiling-Deep sequencing

Adaptive Biotechnologies, Inc

- Illumina HySEQ compatibe sequencing using multiplex PCR with primers to all known V and J segments
- Amplification of rearranged TcR β CDR3 and IgH sequences
- Custom software to verify, align, catalogue, and quantify individual sequences
- Compatible with genomic DNA
- Provides integrated and quantitative snapshot of T and B cell diversity and abundance

Deep sequencing reveals a diverse population of persisting gene-modified T cells post immunotherapy

6 month post infusion sample, sorted on CAR19+ and negative CD8+ cells

CD8+ CART19 cells

Adaptive Biotechnologies, Seattle, WA

9 clonotypes >1% c.a. 20 clonotypes >0.1%

Complete responses are associated with deep molecular remissions: IGH deep seqencing

Patient	Tissue	timepoint	Cell equivalents	total productive reads	Total unique sequences	Total tumor reads	tumor clone frequency
UPN01	Blood	-1	158, 730	408,579	48	407,592	99.8
		28	158, 730	0	0	0	0
		176	79,365	285,305	7362	0	0
	Marrow	28	158,730	0	0	0	0
		176	158,730	202,535	4451	0	0
		720	279,924	261	13	0	0
UPN02	Blood	-1	61,270	1,385,340	4,534	1,231,018	88.9
		31	158, 730	0	0	0	0
		176	317,460	0	0	0	0
	Marrow	31	277,778	0	0	0	0
		176	158730	0	0	0	0
		741	222,019	707	29	0	0
CHP959- 100	Blood	-1	111,340	189	6	185	97.88
		23	218,210	0	0	0	0
		87	288,152	0	0	0	0
		180	420,571	6	2	0	0
	Marrow	-1	317,460	59,791	318	59,774	99.97
		23	362,819	37	2	33	89.19
		87	645,333	10	1	10	100
		180	952,381	45	7	0	0
CHP959- 101	Blood	-1	152,584	38,170	52	30,425	79.71
		23	417,371	92	5	18	19.6
	Marrow	-1	158,730	68,368	65	50,887	74.43
		23	305,067	1,414	11	946	66.9
		60	916,571	530,833	206	363,736	68.9

Potential solid tumor applications?

Potential companion diagnostic- Higher levels of peripheral CTL019 cells detected in complete responders

Q-PCR analysis
CTL019 cells/microgram genomic DNA

Blood-based biomarker studies can provide important insights for immunotherapy-based studies

MOA insights: Treatment and combination-unique signatures detected in peripheral blood by exome sequencing

Combination Therapy with Anti-CTLA-4 and Anti-PD-1 Leads to Distinct Immunologic Changes In Vivo

Rituparna Das,** Rakesh Verma,** Mario Sznol,** Chandra Sekhar Boddupalli,**
Scott N. Gettinger,** Harriet Kluger,** Magaret Callahan,* Jedd D. Wolchok,*
Ruth Halaban,* Madhav V. Dhodapkar,** and Kavita M. Dhodapkar**,*

Journal of Immunology, 2015

Affymetrix GeneChip Human Transcriptome 2.0 exon array

PD measures: Transient proliferative response observed in CD8 cells observedpost anti-PDL1 therapy

del:10.1088/nature1831

Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients

Roy S. Herhat¹, Jean-Churlen Soria², Marcin Kowanste³, Grogg D. Fine³, Omid Hamid⁴, Michael S. Goedon⁵, Jeffery A. Sossmat⁶, David F. McChernsut⁷, John D. Powdeth⁵, Socie N. Gettinger⁴, Holbrook E. K. Kohra⁶, Leona Homi⁸, Donald P. Lavennos⁶, Sardas Bost⁶, Maya Leslemat⁶, Yuanyuan Xuo⁶, Ahrnad Mokatrin⁶, Hartmat Kooppen⁷, Phit S. Heghe⁴, Ira McErnan⁸, Damid S. Cheri⁶ & F. Siphon Holff⁶.

Summary/Conclusions

- Successful development and implementation of biomarker studies requires:
 - Robust sampling schemes to capture temporal kinetics of modulation
 - ➤ High throughput and broad assays that enable hypothesis generating insights
 - > Quality-supporting infrastructure
 - Ability to support integrated meta-analysis of data
- Rationally designed blood-based biomarkers play an important role in the clinical development of immuno-oncology programs

