Current Status of Chimeric and Adoptive T Cell Therapy

Marco L Davila Blood and Marrow Transplantation Immunology Moffitt Cancer Center

Disclosures

None

There will be discussion about the use of products for non-FDA approved indications in this presentation.

T cell immunotherapy

Antigen Receptors

Creation of the Chimeric Antigen Receptor (CAR)

CARs genetically retarget T cells

Proc. Natl. Acad. Sci. USA Vol. 90, pp. 720-724, January 1993 Immunology

Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the γ or ζ subunits of the immunoglobulin and T-cell receptors

(single-chain Fv domain/chimeric receptors/immunotargeting/T cell)

ZELIG ESHHAR*, TOVA WAKS, GIDEON GROSS[†], AND DANIEL G. SCHINDLER

Advantages of CARs

- HLA-independent antigen recognition
- Active in both CD4⁺ and CD8⁺ T cells
- Target antigens include proteins, carbohydrates and glycolipids
- Rapid generation of tumor specific T cells
- Minimal risk of autoimmunity or GvHD
- A living drug, single infusion
- Universal application to all patients

Makes & models of CARs

CARs hit a speedbump

Signals through T Cell Receptor-5 Chain Alone Are Insufficient to Prime Resting T Lymphocytes

By Thomas Brocker and Klaus Karjalainen

From the Basel Institute for Immunology, 4058 Basel, Switzerland

T cell activation requires 2 signals

Sadelain et al. Nat Rev Cancer 2003

Next-gen CARs are better in vivo

Brentejens et al. Nat Med 2003

Milone et al. Molecular Therapy 2009

Next-gen CARs

CARs in clinical trials

Davila et al. Oncoimmunology 2012

Eligibility and Treatment Schemes

- Adult patients are eligible (>18 year old).
- Patients must have B-ALL refractory, relapsed, MRD+, or in CR1. Ph+, extramedullary disease, CNS Leukemia, and/or relapsed after prior allo- stem cell transplant are all eligible.

Patient and disease characteristics

Patient Characteristics (n=16)	# Patients	%
Age (years)		
Median	50	
Range	23-74	
Baseline tumor cytogenetics		
Unfavorable	7	44
Ph+	4	25
Other	9	56
Prior Allo-SCT		
Yes	4	25
No	12	75
Refractory to pre-CAR T		
salvage therapy		
Yes	14	88
No	2	12
Tumor burden in BM before		
CAR T cell infusion		
(n=15)*		
MRD-	2	13
MRD+	5	33
overt residual disease	8	53

19-28z CAR T cells are an effective salvage therapy

Treatment of chemotherapy refractory B-ALL

- MSK-ALL4
 - 59 yo male with relapsed B-ALL after therapy on ECOG-2993
 - Salvage chemotherapy with vincristine/prednisone
 - 63% blast cells in the BM after re-induction chemotherapy
- MSK-ALL5
 - 56 yo male with relapsed B-ALL after therapy on ECOG-2993
 - Salvage chemo with high dose AraC and mitoxantrone
 - 70% BM blasts after re-induction chemotherapy

Rapid Morphological Remissions Following CAR Modified T cell Infusions

CD19-targeted CAR T cell therapy for B-ALL: Similar efficacies

CD19-targeted CAR T cell therapy for B-ALL: Similar efficacies

Adverse Events

- Fevers
- Hypotension
- Hypoxia
- Neurologic changes mental status change, obtundation, seizures
- Malaise

Fevers post CAR T cell infusion

The toxicities are due to a cytokine release syndrome (CRS)

Davila et al. Sci Trans Med 2014

Pharmacologic management for CRS

Davila et al. Sci Trans Med 2014

Summary

- Equivalent high complete response rate in patients with chemotherapy refractory disease
- Patients can be transitioned to an allo-SCT
- Steroids are effective at ameliorating the CRS but at the cost of lymphotoxicity, resulting in eventual relapses
- Tocilizumab is effective at treating the CRS without lymphotoxicity.
- Neurologic toxicities, which are self-limiting, are associated with CAR T cell detection in the CNS
- CD19-negative escape leads to relapses

Initial clinical trials using CD19 targeted T cells in low grade B cell malignancies

Comparison of trials using CD19 CAR-targeted T cells in patients with indolent B cell malignancies

Center	T-cell activation	Gene delivery and expression methods	EOP T-cell phenotype	Range days in culture
UPenn	Anti-CD3/Anti-CD28 stimulation	Lentiviral vector (EF-1α promoter)	NA	10–14
NCI	Anti-CD3 (OKT3) + autologous PBMCs	MSCV-Gammaretroviral vector	CD45RA+ (5–26%), CD62L+ (4–35%) CCR7+ (5–37%)	24
MSKCC	Anti-CD3/Anti-CD28 stimulation	SFG-Gammaretroviral vector	CD62L+ (9–78%) CCR7+ (1–36%) CD28+ (43–94%) CD25+CD4+ FOXP3+ (0.6–2.4%)	11–19
Baylor	Anti-CD3 (OKT3)	SFG-Gammaretroviral vector	CD45RA+ (0–15%) CD62L+ (15–90%) CCR7+ (0%) CD28+ (15–90%)	6–18
City of Hope	Anti-CD3 (OKT3) + PBMCs/lymphoblastoid cell lines	Plasmid electroporation and hygromycin B selection	NA	≥ 55

EOP, end of production; NA, not available; PBMC, peripheral blood mononuclear cell.

Comparisons of published clinical data

Patient*	CAR⁺ T-cell dose (per kg)	CD4*/CD8* Tumor bur- ratio den**	E:T ratio***	Outcome	Max VCN	Peak CAR	
					(per µg DNA)	detection (day)	
MSKCC01	31×10^{6}	94/5	$4.2 imes 10^{12}$	$6.0 imes 10^{-4}$	PD	43	14
MSKCC02	15×10^{6}	96/5	****	****	PD	0	NE
MSKCC03	15×10^{6}	93/8	$2.9 imes 10^{12}$	$3.7 imes 10^{-4}$	PD	0	NE
MSKCC05	5.2×10^{6}	87/12	2.0×10^{12}	$2.0 imes 10^{-4}$	LN reduction	257	6
MSKCC06	4.6×10^{6}	79/21	2.9×10^{12}	$1.4 imes 10^{-4}$	PD	14	1
MSKCC07	8.1 × 10 ⁶	58/27	6.6 × 10 ¹¹	1.1 × 10 ⁻³	SD	6143	8
MSKCC08	11×10^{6}	92/8	1.2×10^{12}	1.1 × 10 ⁻³	SD	1143	1
UPENN01	16×10^{6}	NR	1.7×10^{12}	6.5 × 10 ⁻⁴	CR	200000	15
UPENN02	10×10^{6}	NR	3.5×10^{12}	1.7×10^{-4}	PR	1000	110
UPENN03	0.2×10^{6}	NR	8.8×10^{11}	1.6 × 10⁻⁵	CR	10000	23
NCI03	11×10^{6}	35/53	NR		CR	NR	7
NCI05	3×10^{6}	87/12	NR		SD	NR	7
NCI06	17×10^{6}	37/57	NR		PR	NR	7
NCI07	28×10^{6}	58/41	NR		PR	NR	9

*CLL, UPENN, and NCI refer to patients treated at MSKCC, UPenn, and NCI, respectively. Two CLL patients have been excluded from this table: one due to a history of Epstein-Barr virus (EBV)⁺ non-Hodgkin's lymphoma,²⁰ and one owing to early death.⁹ **Tumor burden for bone marrow and blood is calculated as described by Kalos et al.⁷ ***The E:T ratio is calculated as the number of infused anti-CD19 T cells divided by the tumor burden. ****Bone marrow aspirate and biopsy did not include cellularity so tumor burden could not be calculated. Abbreviations: CR, complete remission; NE, not evaluable; NR, not reported; PD, progressive disease; PR, partial remission; SD, stable disease.

CD19-targeted CAR T cell therapy for CLL: Limited efficacies

Davila et al. Oncoimmunology 2012

CD19-targeted CAR T cell therapy for CLL: Limited efficacies

Future Directions

- Phase II trials for B-ALL
- Definition of the CRS, as well as further management optimization
- Why are acute leukemias so much more sensitive than NHL?
- Modification of CD19-targeted to prevent tumor escape
- Targets other than CD19. What are the next success stories in hematologic malignancies or solid tumors?