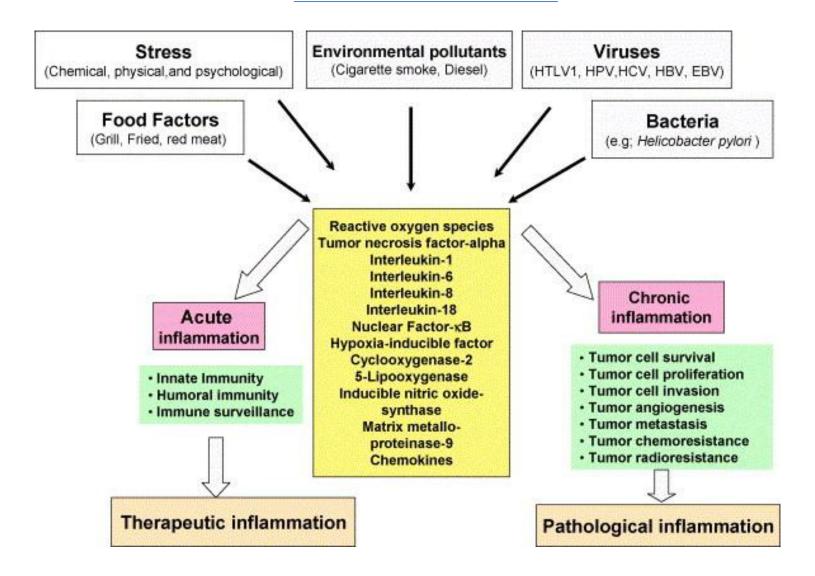
Dual Role of the Immune System in Protection and Pathogenesis

Keith L. Knutson, Ph.D.

Director, Cancer Vaccines and Immune Therapies Program, Center for the Diseases of Aging VGTI Florida, Port St. Lucie, FL

> Associate Professor of Immunology, Mayo Clinic, MN, FL, AZ Associate Professor, CMBB, Florida Atlantic University, Jupiter, FL Deputy Editor, Cancer Vaccines (De Gruyter Open) Special Edition Editor, Vaccine (Elsevier) Chair, SAB, TapImmune Inc. Seattle, WA SAB, Antigen Express, Boston, MA

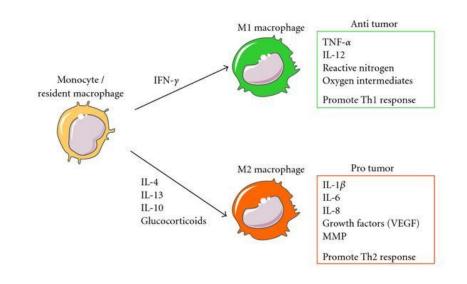


Paradoxical roles of the immune system in cancer development

- The key functions of the mammalian immune system:

 Protect from infectious pathogens
 Monitor tissue homeostasis => Eliminate damaged cells (e.g. tumor cells) and induce wound healing.
- Mechanisms against cancer development:
 (1) Cellular immunity- T, NK, & Other innate immune cells
 (2) Humoral immunity- Cytokines, Abs, etc.
- Mechanisms promoting cancer development:
 (1) Homeostatic Inflammation => Angiogenesis & Tissue remodeling
 - (2) Enhance survival pathways (NF-kB activation)
 - (3) Suppression of anti-tumor immune responses

Acute vs. Chronic Inflammation: Role in Cancer Pathology


The difference between acute and chronic inflammation

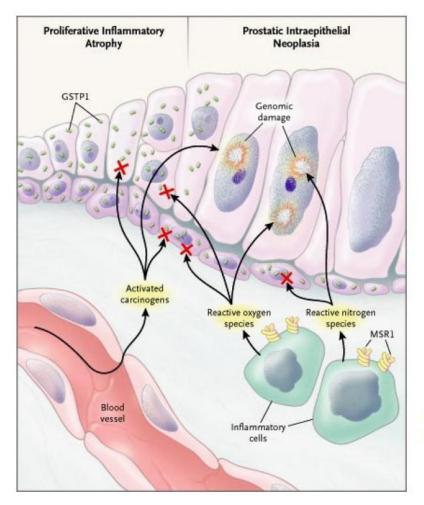
Acute Inflammation

- Type I response
- Cell and tissue destruction
- Antigen or insult elimination
- M1 Macrophages
- Neutrophils
- Activated DCs
- Cytotoxic T cells
- Antibodies
- Th1 T cells
- Resolution and wound repair

Chronic Inflammation

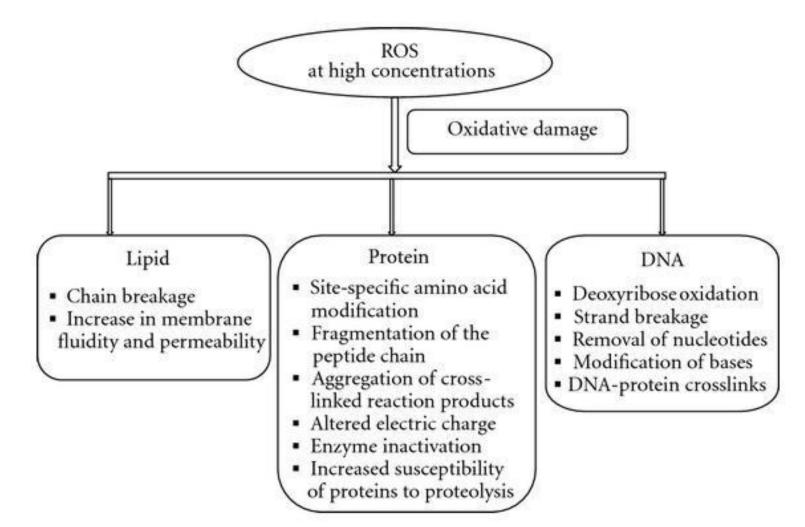
- Type 2 response
- Antigen or insult persistence
- Remodeling programs
- M2 Macrophages
- Th2 T cells IL-13
- Treg T cells
- Suppressive myeloid cells

Association of inflammation with cancers

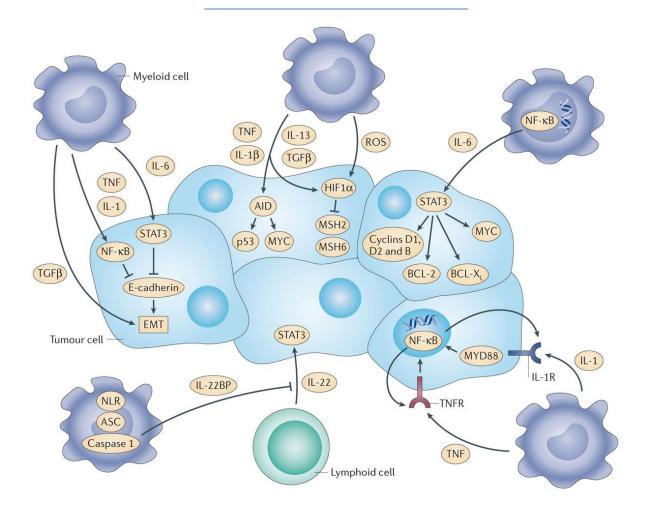

•	Tobacco Use:	30%
•	Diet:	35%
•	Obesity:	20%
•	Infectious Agents:	18%
•	Radiation or Environmental Pollutants:	7%

Jemal, 2010, CA Cancer J. Clin

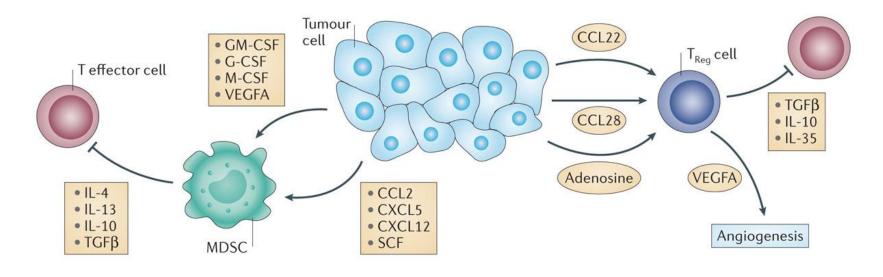
Association of chronic inflammation with cancers


Inflammation that causes insults or pathological conditions	Associated malignancy	
Silica, asbestos, smoking-associated silicosis and bronchitis	Lung carcinoma	
Pelvic inflammatory disease	Ovarian carcinoma	
Chronic indwelling urinary catheter	Bladder carcinoma	
TRYP1 mutation-associated pancreatitis and alcoholism-associated pancreatitis	Pancreatic carcinoma	
UV irradiation-associated skin inflammation	Melanoma	
Asbestos	Mesothelioma	
Bile acids	Cholangiosarcoma and colorectal carcinoma	
Gastric acid-associated Barrett's metaplasia and reflux oesophagitis	Oesophageal carcinoma	
Gall bladder stone-associated cholecystitis	Gall bladder carcinoma	
Lichen sclerosus (a skin condition)	Vulvar carcinoma	
Inflammatory bowel disease	Colorectal carcinoma	
Hashimoto's thyroiditis (an autoimmune disease of the thyroid) and Sjögren's syndrome (an autoimmune disease of exocrine glands)	Mucosa-associated lymphoid tissue lymphoma	
Gingivitis (inflammation of the gum tissue) and lichen planus	Oral squamous cell carcinoma	
Sialadenitis (inflammation of the salivary gland)	Salivary gland carcinoma	
TRYP1, trypsinogen 1; UV, ultraviolet.		

Chronic inflammation causes genomic damage through reactive oxygen and nitrogen



Nelson WG *et al.* New Engl J Med *349:* 366-81 (2003).


Chronic inflammation causes lipid and protein damage damage through reactive oxygen and nitrogen

Inflammation elevates cytokines that activate transcription factors which promote tumor formation and progression.

Inflammation induces immune suppressive cells which prevent adaptive cellular immunity

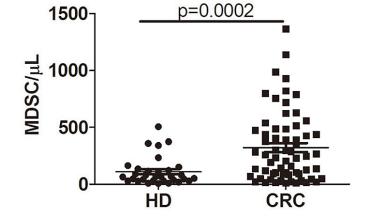
Nature Reviews | Cancer

Chronic inflammation can act locally or at a distance

Carcinogenesis vol.0 no.0 pp.1-4, 2012 doi:10.1093/carcin/bgs112 Advance Access publication February 26, 2012

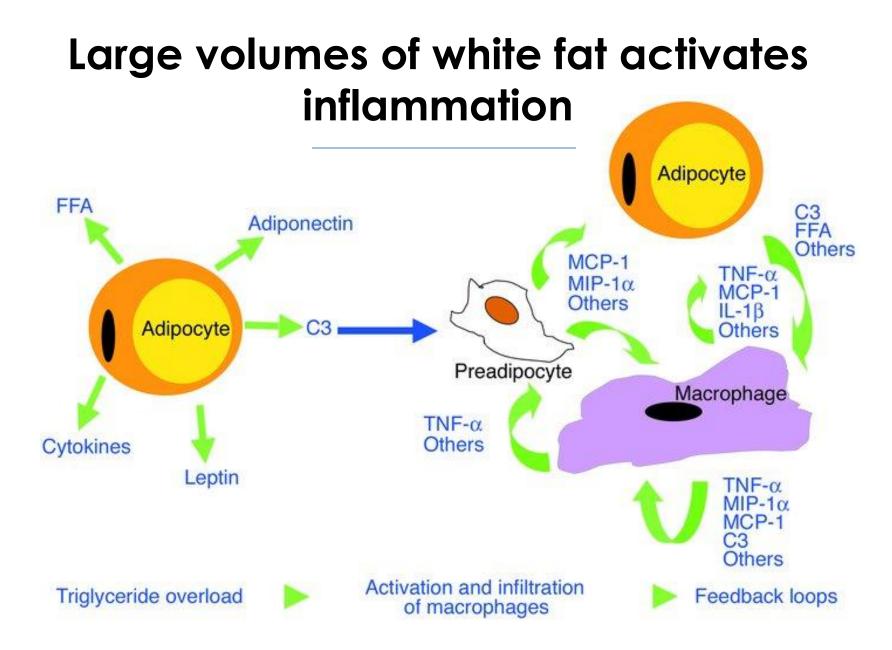
Periodontal disease, *Porphyromonas gingivalis* serum antibody levels and orodigestive cancer mortality

Jiyoung Ahn*, Stephanie Segers and Richard B.Hayes

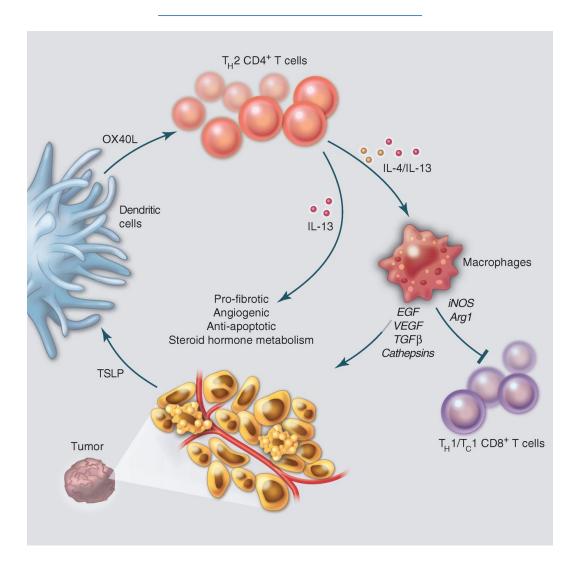

Division of Epidemiology, Department of Environmental Medicine, New York University School of Medicine, 650 First Ave, New York, NY 10016, USA

*To whom correspondence should be addressed. Tel: +1 212 263 3390; Fax: +1 212 263 8570; Email: Jiyoung.Ahn@nyumc.org

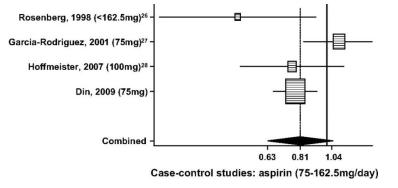
Materials and methods


Study population

The National Health and Nutrition Examination Survey III (NHANES III) survey, which was conducted in two phases between 1988 and 1994 by the National Center for Health Statistics (NCHS) of the Centers for Disease Control and Prevention (CDC), was designed to examine the health and nutritional status of the non-institutionalized USA population (6) including estimates for



PLOS ONE. 10.1371/journal.pone.0057114.g002.


Malignant cells foster development of wound healing responses

Preventing Tumor-inducing Inflammation

- Life style changes: lose weight, quit smoking, quit drinking.
- Non-steroidal antiinflammatories: colorectal, bladder, ovarian.
- Vaccination: HBV, MUC1
- **Phytochemicals:** Variety of inhibitors (Natural Cox and Stat3 inhibitors).

Published OnlineFirst December 17, 2012; DOI: 10.1158/1940-6207.CAPR-12-0275

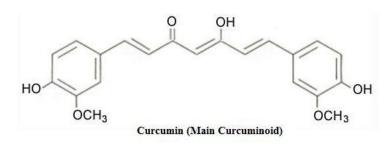
Research Article

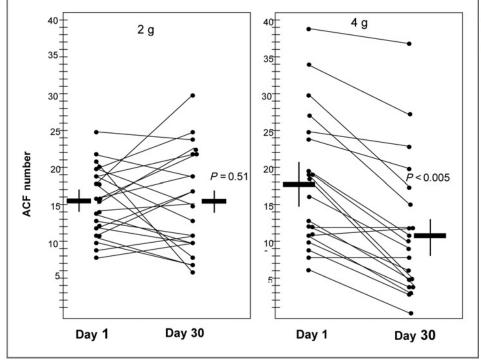
MUC1 Vaccine for Individuals with Advanced Adenoma of the Colon: A Cancer Immunoprevention Feasibility Study

Takashi Kimura¹, John R. McKolanis¹, Lynda A. Dzubinski², Kazi Islam³, Douglas M. Potter⁴, Andres M. Salazar⁵, Robert E. Schoer², and Olivera J. Finn¹

Preventing Tumor-inducing Inflammation with Aspirin

- Overall benefit: 12% overall reduction in incidence. 19% at 5 year or more duration. 24% if used for 3 or more years. Lancet 2012
- Site Specific Curr Oncol Res 2013
 - Colorectal: 2
 - Esophageal:
 - Gastric:
 - Breast:
 - Prostate:


– Lung:


20-38% 27-43% 29-39% 8-18% 9-14% 19%

Risk Benefit

Intracranial Bleeding Ulcers Diabetes Smoking Cholesterol

Preventing Tumor-inducing Inflammation with Curcumin



Mechanisms of action Blocks NFkB activation Blocks Jak-Stat pathways

Risk Benefit Low grade only Diarrhea Distension Reflux Iron deficiency (susceptible people)

Converting chronic to acute inflammation

Science 2013;339:286-291

Reversing Tumor-Associated Chronic Inflammation

Inhibition of Reprogramming/depleting Boost of procancer inflammation anticancer pathways immune cells **Blocking immune cell** NF-KB/STAT3/PI3K-AKT/HIF-1 recruitment STAT3 inhibitors Autophagy CSF1/CSF1R antagonists IKKb inhibitors Resveratrol **JAK2** inhibitors CXCR2/CXCL1 antagonists Rapamycin Triterpenoids CCR2 antagonists AMPK activation Curcumin CD20 blockade Resveratrol Fasting CDDO Arachidonic acid metabolism T cells Inflammasome inhibitors cBCG, TLR7 agonists Aspirin Anakinra COX2 inhibitors Vaccines IL-18BP Eicosanoid R antagonists ICD/chemotherapy Omega3 polyunsat. fatty acid Immune checkpoint blockade T_µ2-->T_µ1 reprogramming CSF1/CSF1R antagonists Inflammatory cytokines IL-4/IL-4R antagonists CD40 agonists **VEGF/VEGFR** antagonists B cell depletion IL-4/IL-13/OX40 antagonists TNFα/TNFαR antagonists IL-6 antagonists CSF1/CSF1R antagonists IL-1/IL-1R antagonists IL-10 antagonists IL-18/IL-18BP antagonists CXCL12/CXCR4, CCL2 antagonists

CHEMOTHERAPY; RADIATION THERAPY; TARGETED THERAPIES; ANTI-ANGIOGENIC

Reversing from a chronic to an acute inflammatory response

Boosting adaptive Th1 immunity

- Vaccines
- T cell therapy
- Radiation
- Cytokines
- Viral therapy

Reversing immune suppression/regulatory mechanisms

- Checkpoint Blockade
- Tregs
- MDSCs