

Immunotherapy for the Treatment of Lung Cancer

Ticiana A. Leal, MD
Assistant Professor of Medicine
Thoracic Oncology Program Leader
University of Wisconsin - Madison

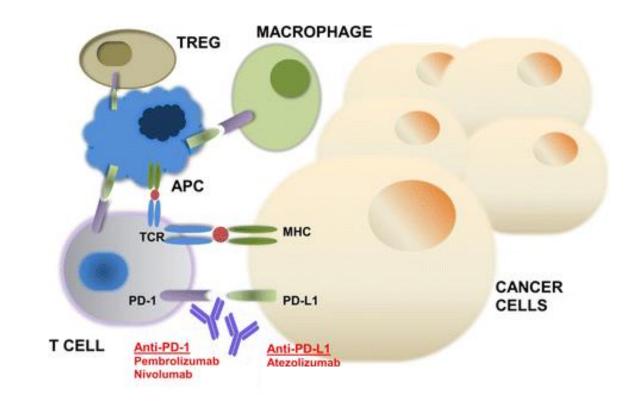
Disclosures

 Consulting/Advisory Board: Takeda, AstraZeneca, Novartis, AbbVie, BMS

• I will be discussing non-FDA approved indications during my presentation.

Presentation Outline

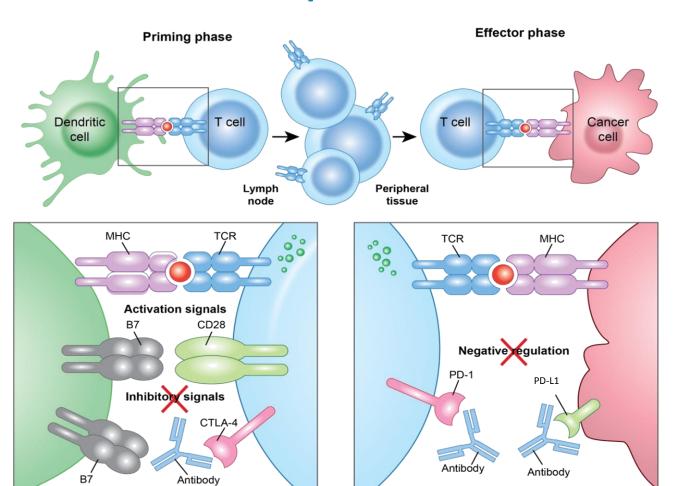
- Background: Checkpoint inhibitors for the treatment of lung cancer
- Overview of clinical trial results that led to current FDA approval of immunotherapies for the treatment of advanced/refractory and advanced/treatment naïve NSCLC
- Overview of clinical trial results that led to current FDA approval of immunotherapies for locally advanced NSCLC
- Overview of established and emerging predictive biomarkers (PD-L1, TMB) for treatment with immunotherapies for NSCLC
- Case Studies



Immunotherapy for the Treatment of Lung Cancer Checkpoint Inhibitors: PD-1 and PD-L1

- Checkpoint inhibitors for the treatment of metastatic disease
 - PD-1 acts as "off-switch" for T-Cells allowing cancer cells to evade immune attack
 - Antibodies against PD-1 and PD-L1 boost the immune response against cancer cells

Gong J, Journal for ImmunoTherapy of Cancer, 2018



Combination Immune Checkpoint Blockade

Ribas A, NEJM, 2012

FDA-approved Checkpoint Inhibitors for use in NSCLC

Nivolumab

Pembrolizumab

Atezolizumab

Durvalumab

2015 (March)

Nivolumab FDA approved in 2nd line Sq NSCLC

initiated Pembrolizuma b FIH trial

initiated

Checkmate

017 and 057

2012

2008

Nivolumab

FIH trial

initiated

2015 (Fall)

Nivolumumab Approved in Fall for 2nd line Nonsq NSCLC

Pembrolizumab FDA approved in 2nd line NSCLC (PD-L1 ≥ 50%)

2016 (Fall)

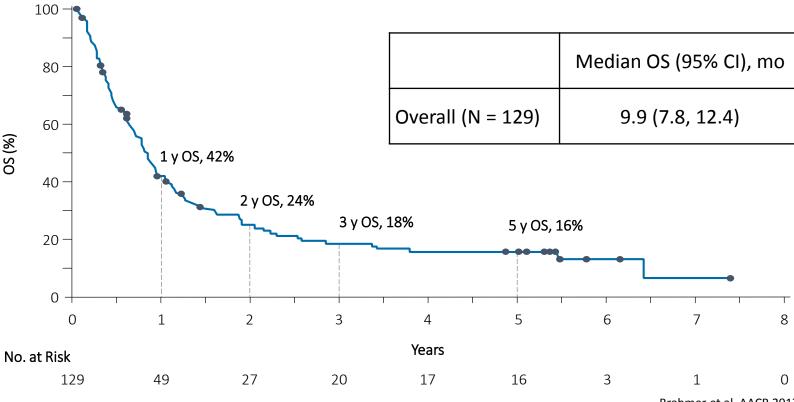
Pembrolizumab FDA approved 1st line NSCLC (PD-L1 ≥ 50%)

Pembrolizumab FDA approved in 2nd line NSCLC (PDL1 ≥ 1%)

Atezolizumab FDA approved 2nd line NSCLC 2017 (May)

Pembrolizumab +
Pemetrexed and
Carboplatin
FDA approved
1st line NSCLC 2017
(July)

Durvalumab FDA Approved for Stage III NSCLC



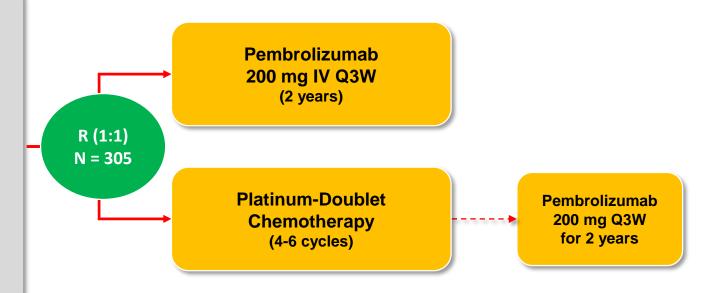
CA209-003: Nivolumab in Heavily Pretreated Advanced NSCLC (NCT00730639) Phase 1, 5-Year Update

- First report of long-term survival rate in patients with metastatic NSCLC treated with an immune checkpoint sinhibitor
- According to the National Cancer Institute's SEER data,
 5-year survival rate for patients with advanced NSCLC is 4.9%

Brahmer et al, AACR 2017 NCI SEER data, Lung and Bronchus Cancer, 2014

Treatment Naïve Regimens: Competing Strategies

- KEYNOTE 024 Pembrolizumab vs. Chemotherapy in PD-L1 ≥ 50%
- KEYNOTE 042 Pembrolizumab vs. Chemotherapy in PD-L1 ≥ 1%
- KEYNOTE 189 Pembrolizumab + Chemotherapy vs. Chemotherapy alone in patients with advanced non-squamous NSCLC
- IMPOWER 150 Atezolizumab + Chemotherapy (Bev) vs. Chemotherapy (Bev) in patients in advanced non-squamous NSCLC
- KEYNOTE 407 Pembrolizumab + Chemotherapy vs. Chemotherapy in advanced squamous cell lung cancer
- CheckMate 227 Ipilimumab + Nivolumab vs. Chemotherapy in advanced NSCLC with high TMB


KEYNOTE-024:

Pembrolizumab vs. Chemotherapy for PD-L1 Positive (≥ 50%)

NSCLC Study Design (NCT021427389)

Key Eligibility Criteria

- Untreated stage IV NSCLC
- PD-L1 TPS ≥50%
- ECOG PS 0-1
- No activating EGFR mutation or ALK translocation
- No untreated brain metastases
- No active autoimmune disease requiring systemic therapy

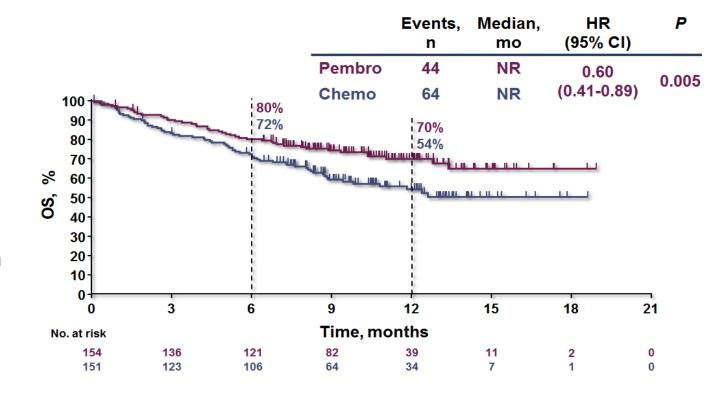
Key End Points

Primary: PFS (RECIST v1.1 per blinded, independent central review)

Secondary: OS, ORR, Safety

Exploratory: DOR

Reck M et al, ESMO 2016, NEJM 2016

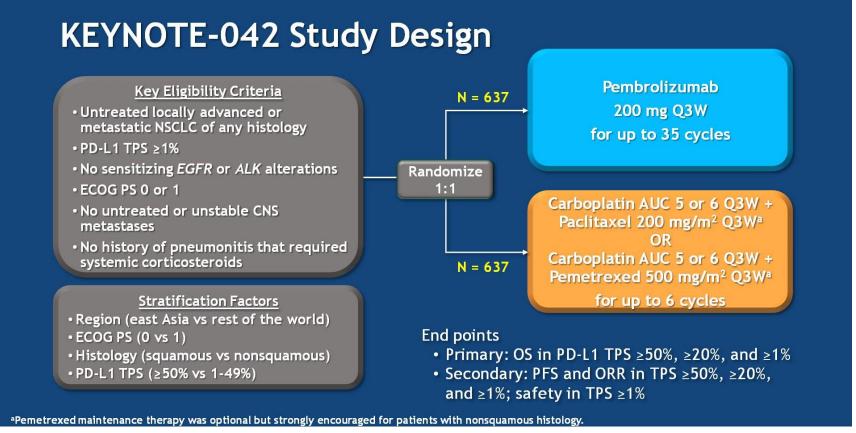


KEYNOTE-024: Pembrolizumab vs. Chemotherapy for PD-L1 ≥ 50% NSCLC Overall Survival

Survival benefit

- Estimated Overall Survival at 12 months: 70% (Pembrolizumab) vs 54% (Chemotherapy)
- Hazard Ratio for death: 0.60
- Significantly longer OS in Pembrolizumab group despite cross-over in 50% of patients in control arm
- Median OS not reached in either group

Reck M et al, ESMO 2016, NEJM 2016



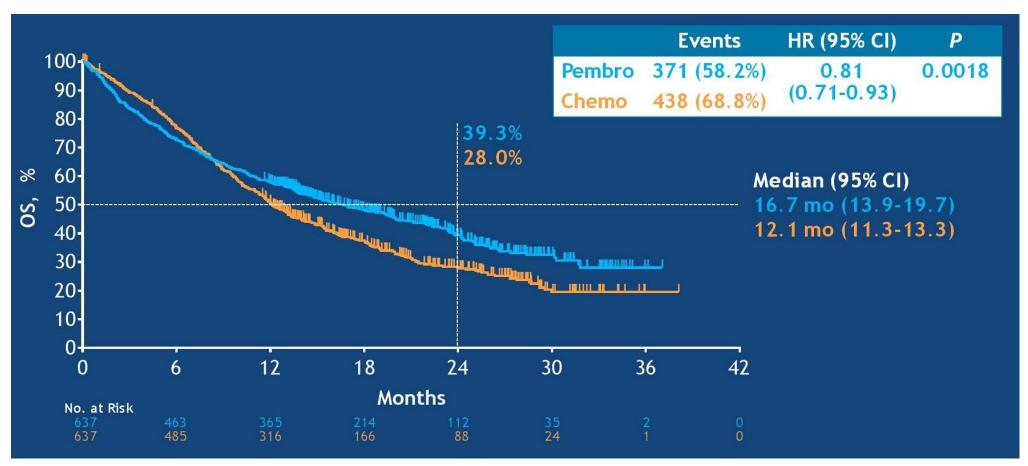
KEYNOTE-042: Pembrolizumab vs. Chemotherapy for PD-L1 ≥ 1% NSCLC

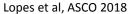
Key End Points

Primary: OS in PD-L1 TPS \geq 50%, \geq 20%, and \geq 1%

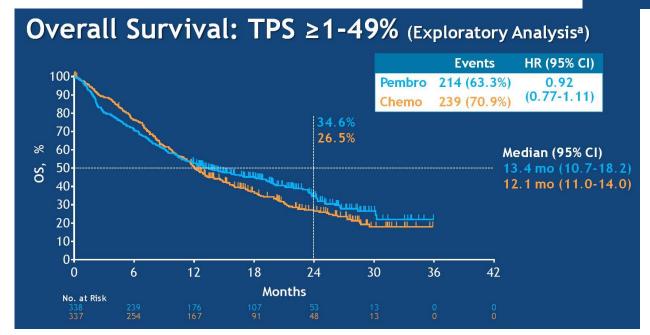
Secondary: PFS and ORR in TPS \geq 50%, \geq 20%, and \geq 1%; safety in TPS \geq 1%

Lopes et al, ASCO 2018





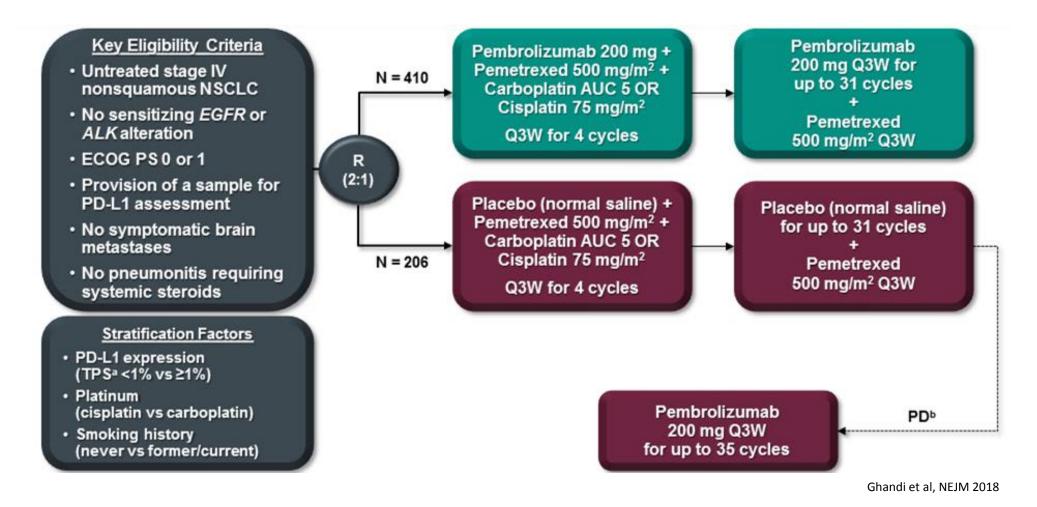
KEYNOTE-042: Pembrolizumab vs. Chemotherapy for PD-L1 ≥ 1% NSCLC Overall Survival



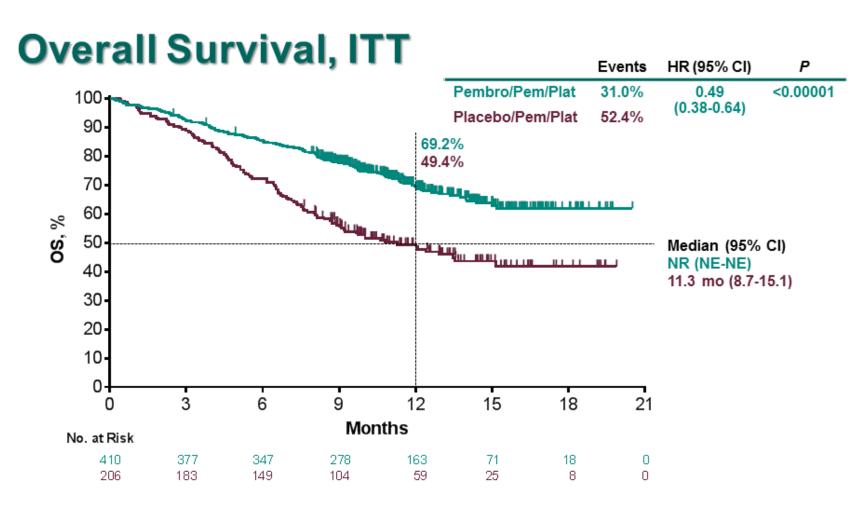
Survival benefit seemed to be driven by the TPS ≥ 50% subset with no OS benefit in the subset TPS ≥ 1- 49%

Overall Survival: TPS ≥50% **Events** HR (95% CI) Pembro 157 (52.5%) 0.69 0.0003 (0.56 - 0.85)199 (66.3%) 80-44.7% 70-30.1% % 60-Median (95% CI) 08, 20.0 mo (15.4-24.9) 12.2 mo (10.4-14.2) 20-10-12 18 24 30 36 42 Months No. at Risk

Lopes et al, ASCO 2018

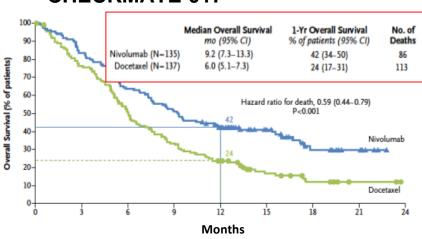


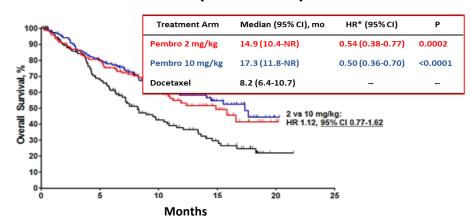
KEYNOTE-189: Carboplatin-Pemetrexed-Pembrolizumab vs. Chemotherapy for Advanced Non-squamous NSCLC



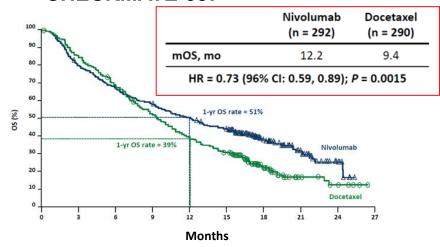
KEYNOTE-189: Carboplatin-Pemetrexed-Pembrolizumab vs. Chemotherapy for Advance Non-squamous NSCLC: OS Results

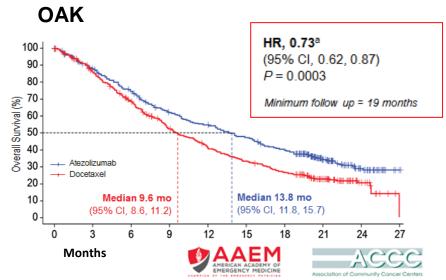
Ghandi et al, NEJM 2018





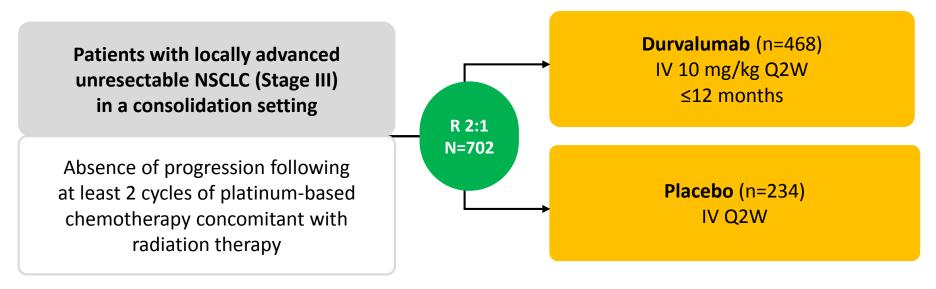
PD1/PD-L1 Inhibitors Increase *Overall Survival* in 2L Advanced NSCLC


CHECKMATE 017



KEYNOTE 010 (TPS ≥ 1%)

CHECKMATE 057



PACIFIC: Durvalumab after Chemoradiotherapy in Stage III NSCLC

Phase 3, randomized, double-blind, placebo-controlled trial (NCT02125461)

Primary endpoints: PFS, OS

Secondary endpoints: ORR, DoR, DSR, Safety/tolerability, PK, immunogenicity, QoL

Results: Durvalumab significantly reduces the risk of disease worsening or death in the Phase III PACIFIC trial for Stage III unresectable lung cancer; PFS was significantly longer with durvalumab than with placebo.

DoR = duration of response; DSR = deep sustained response; NSCLC = non-small cell lung cancer; ORR = objective response rate; OS = overall survival; PFS = progression-free survival; PK = pharmacokinetics; Q2W = every 2 weeks; QoL = quality of life.

- 1. In House Data, AstraZeneca Pharmaceuticals LP. PACIFIC Protocol. 2014.
- 2. NIH 2015 NCT02125461, http://clinicaltrials.gov/ct2/show/NCT02125461
- 3. Creelan B, Iannotti NO, Salamat MA, et al. 2016. (PHRR150325-000989)
- 4. Ann Oncol. 2015;26 (supplement 1): i24-i28, abstract 95TiP.

KEYNOTE-407: Chemotherapy-Pembrolizumab vs. Chemotherapy for Advanced Squamous NSCLC: Toxicity

Pembrolizumab 200 mg Q3W +

Carboplatin AUC 6 Q3W +

Paclitaxel 200 mg/m² Q3W OR

nab-Paclitaxel 100 mg/m² Q1W

for 4 cycles (each 3 wk)

Placebo (normal saline) Q3W +

Carboplatin AUC 6 Q3W +

Paclitaxel 200 mg/m² Q3W OR

nab-Paclitaxel 100 mg/m² Q1W

for 4 cycles (each 3 wk)

Key Eligibility Criteria

- with squamous histology
- Provision of a sample for PD-L1 assessment
- No symptomatic brain metastases
- No pneumonitis requiring systemic steroids

Stratification Factors

- PD-L1 expression (TPSa <1% vs ≥1%)
- Choice of taxane (paclitaxel vs nab-paclitaxel)
- Geographic region (east Asia vs rest of world)

End points

(1:1)

- Primary: PFS (RECIST v1.1, BICR) and OS
- Secondary: ORR and DOR (RECIST v1.1, BICR), safety

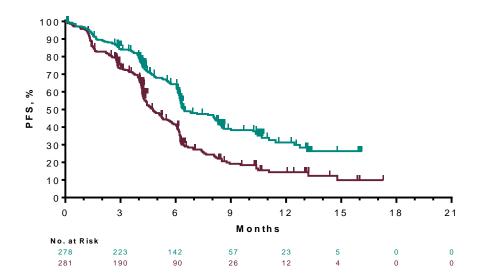
Pembrolizumab 200 mg Q3W for up to 31 cycles

Placebo (normal saline) Q3W for up to 31 cycles

Optional Crossover^b Pembrolizumab 200 mg Q3W for up to 35 cycles

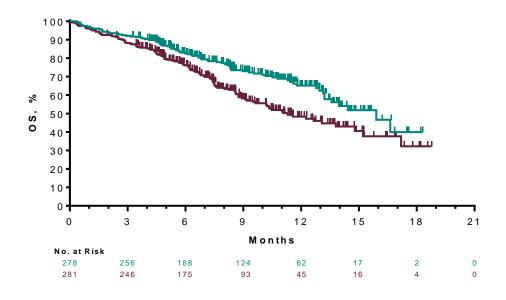
 PD_p

- Untreated stage IV NSCLC
- ECOG PS 0 or 1


Paz-Ares et al, ASCO 2018

KEYNOTE-407: Carboplatin-Taxane - Pembrolizumab vs. Chemotherapy for advanced squamous NSCLC: PFS and OS

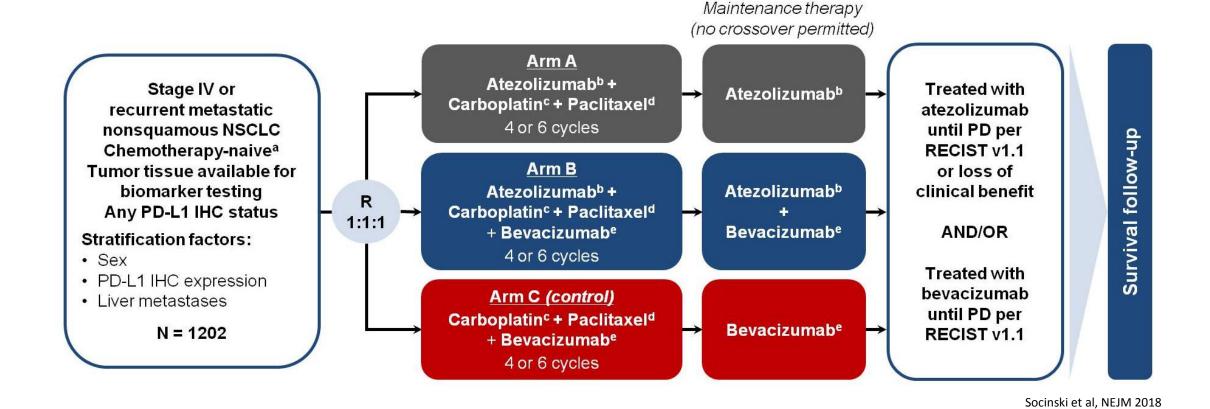
PFS (RECISTv1.1, BICR)


	Events	HR (95% CI)	P
Pembro + Chemo	54.7%	0.56	<0.0001
Placebo + Chemo	70 1%	(0.45-0.70)	

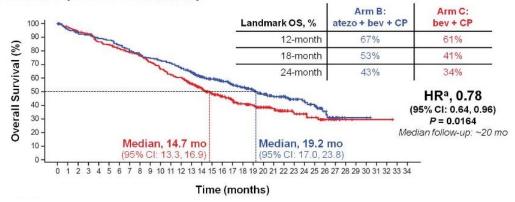
Paz-Ares et al, ASCO 2018

Overall Survival

	Events	HR (95% CI)	P
Pembro + Chemo	30.6%	0.64	0.0008
Placeho + Chemo	42 7%	(0.49-0.85)	

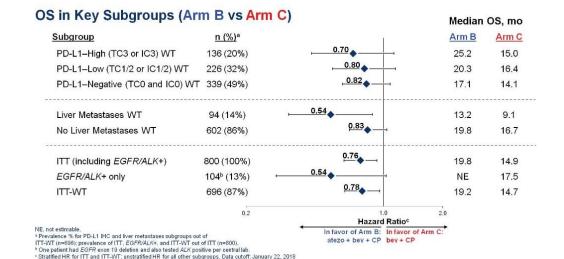


IMPOWER 150: Carboplatin/Paclitaxel/ Bevacizumab/ Atezolizumab vs. Carboplatin/Paclitaxel/Bevacizumab in advanced non-squamous NSCLC



IMPOWER 150: Carboplatin/Paclitaxel/ Bevacizumab/ Atezolizumab vs. Carboplatin/Paclitaxel/Bevacizumab in advanced non-squamous NSCLC

OS in the ITT-WT (Arm B vs Arm C)



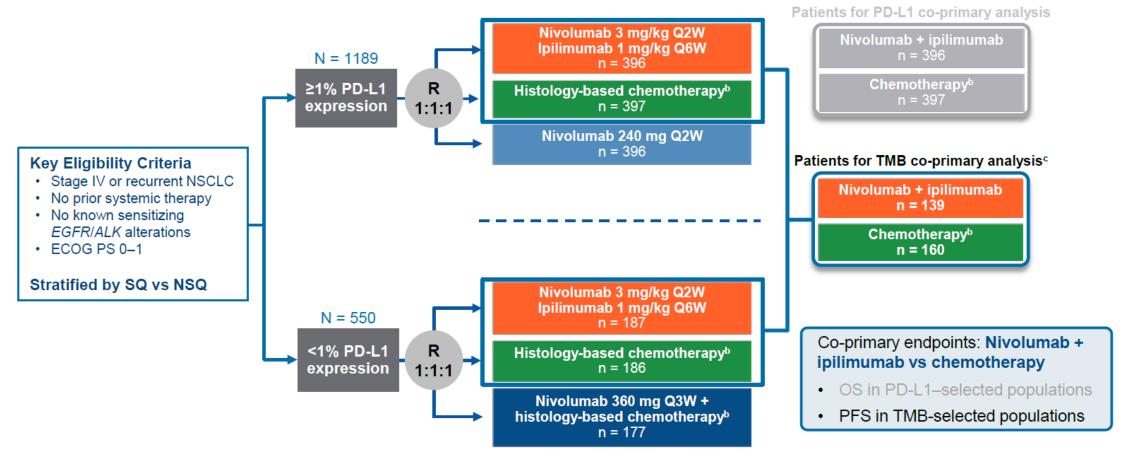
Safety

Incidence, n (%)	Arm A: atezo + CP (n = 400)		Arm B: atezo + bev + CP (n = 393)		Arm C (control): bev + CP (n = 394)	
Median doses received (range), n Atezolizumab Bevacizumab	10 (1-43) NA		12 (1-44) 10 (1-44)		NA 8 (1-38)	
Treatment-related AE ^a Grade 3-4 Grade 5 ^b	377 (94%) 172 (43%) 4 (1%)		370 (94%) 223 (57%) 11 (3%)		377 (96%) 191 (49%) 9 (2%)	
Serious AE	157 (39%)		174 (44%)		135 (34%)	
AE leading to withdrawal from any treatment	53 (13%)		133 (34%)		98 (25%)	
Immune-related AEsc in > 5 patients in any arm	All grade	Grade 3-4	All grade	Grade 3-4	All grade	Grade 3-4
Rash	119 (30%)	14 (4%)	117 (30%)	9 (2%)	53 (14%)	2 (1%)
Hepatitis ^d Laboratory abnormalities	42 (11%) 36 (9%)	12 (3%) 10 (3%)	54 (14%) 48 (12%)	20 (5%) 18 (5%)	29 (7%) 29 (7%)	3 (1%) 3 (1%)
Hypothyroidism	34 (9%)	1 (<1%)	56 (14%)	1 (<1%)	18 (5%)	0
Pneumonitis ^d	23 (6%)	8 (2%)	13 (3%)	6 (2%)	5 (1%)	2 (1%)
Hyperthyroidism	11 (3%)	0	16 (4%)	1 (<1%)	5 (1%)	0
Colitis	3 (1%)	2 (1%)	11 (3%)	7 (2%)	2 (1%)	2 (1%)

The safety profiles of ABCP and ACP were similar to A, B and C+P individually; no new safety signals were identified with the combinations

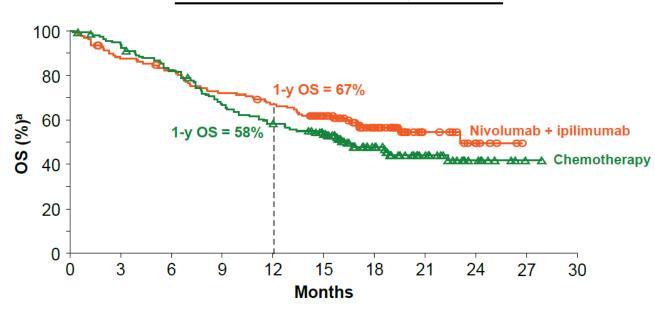
Related to any study treatment. Including fatal hemorrhagic AEs: Arm B: 6; Arm B: 6; Arm C: 3, immune-related AEs were defined using MedDRA Preferred Terms that included both diagnosed immune conditions and signs and symptoms potentially representative of immune-related events, regardless of investigator-assessed causality. In Arm A, 1 patient had grade 5 acute hepatitis and 1 patient had grade 5 interstilla lung disease. Data cutoff: Jaunary 22, 2018

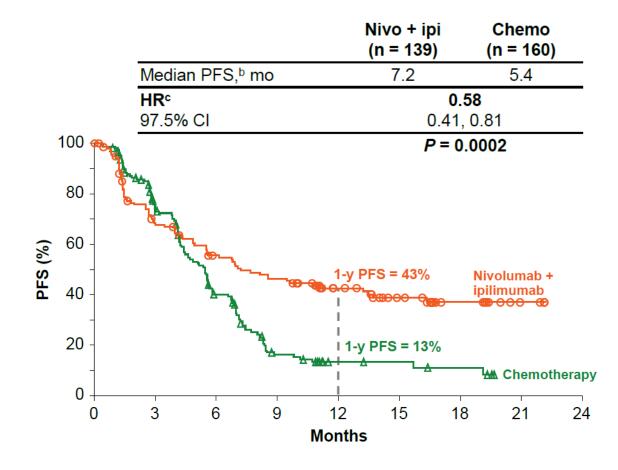
Socinski et al, NEJM 2018



CheckMate 227: Ipilimumab + Nivolumab vs. Chemotherapy in TMB-high patients

Hellman et al, NEJM, 2018

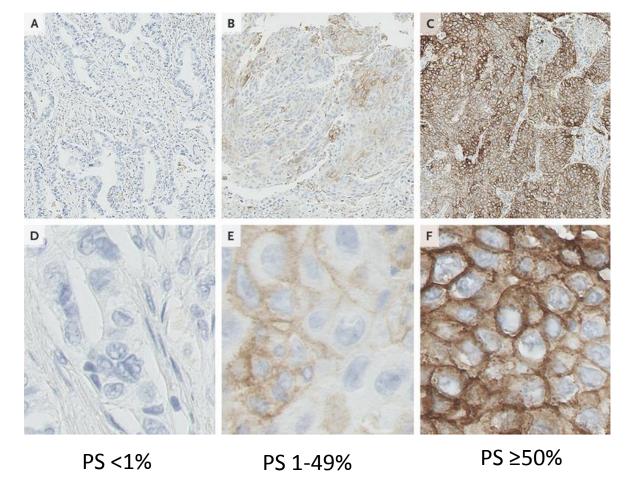




CheckMate 227: Ipilimumab + Nivolumab vs Chemotherapy in TMB-high patients

	Nivo + ipi (n = 139)	Chemo (n = 160)			
Median OS,b mo	23.0	16.4			
HR	0.79				
95% CI	0.56, 1.10				

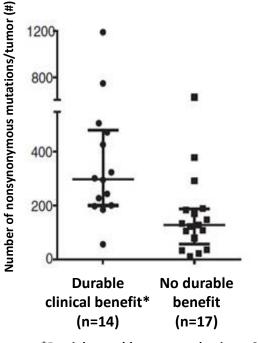
Hellman et al, NEJM, 2018

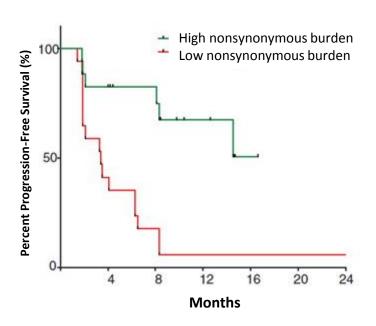


PD-L1 staining of NSCLC with increasing levels of expression

PD-L1 IHC

- Percentage of neoplastic cells showing membranous staining of PD-L1 proportion score (PS)
- Need > 100 cancer cells in order to calculate PS





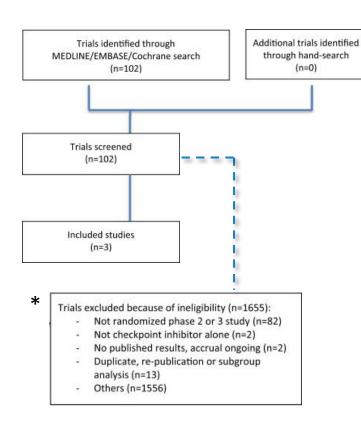
Mutation Burden Determines Sensitivity to PD-1 Blockade in NSCLC

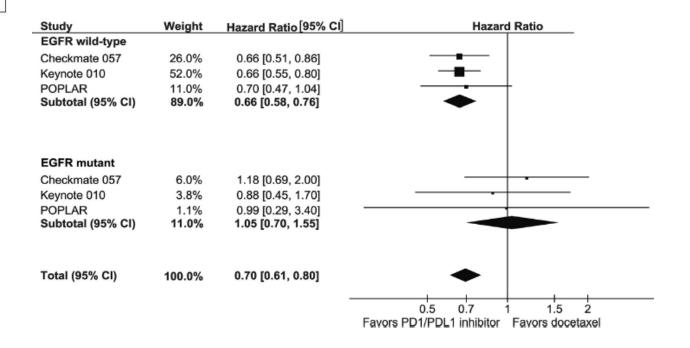
Data for All Sequenced Tumors

^{*}Partial or stable response lasting > 6 mo

Rizvi N et al, Science, 2015

- Whole-exome sequencing of NSCLCs treated with pembrolizumab
- In two independent cohorts, higher nonsynonymous mutation burden in tumors was associated with improved objective response, durable clinical benefit (left panel), and progression-free survival (right panel)





Checkpoint Inhibitors in Metastatic EGFR-Mutated NSCLC

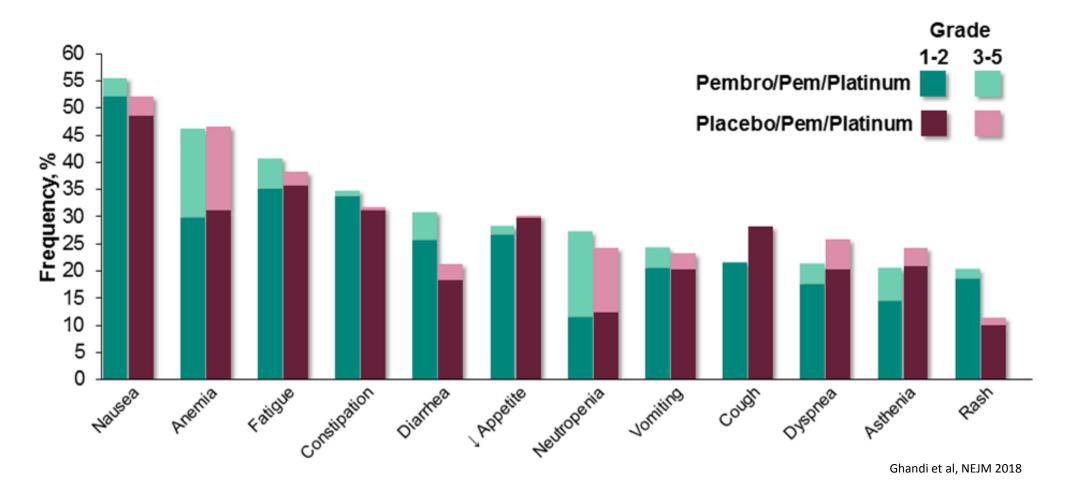
A Meta-Analysis: CM-057, KN-010, POPLAR

CK Lee et al., JTO 2016

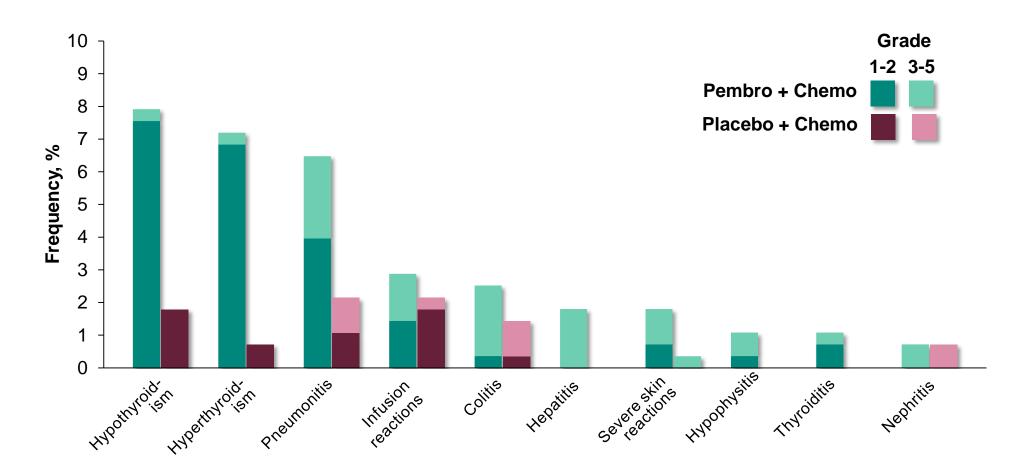
Toxicities in 2/3L Randomized Trials

	Atezolizumab OAK	Nivolumab SQ: CM 017 (updated OS; 2L)	Nivolumab NSQ:CM 057 (updated OS; 2/3L)	Keynote 010
Related Grade 3- 5 AEs	15%	8%	11%	13-16%
Discontinuation due to related AEs	5%	6%	6%	4-5%
Pneumonitis AEs	1%	5%	3%	4-5%

Rittmeyer, et al., *Lancet*Brahmer, et al., *NEJM*Borghaei, et al., *NEJM*Herbst, et al., *Lancet*



KEYNOTE-189: Carboplatin-Pemetrexed-Pembrolizumab vs. Chemotherapy for advance NSCLC: Toxicity



KEYNOTE-407: Carboplatin-Taxane-Pembrolizumab vs. Chemotherapy for advanced squamous NSCLC: Toxicity

Paz-Arez et al, ASCO, 2018

CheckMate 227: Ipilimumab + Nivolumab vs. Chemotherapy in TMB high patients

		⊦ ipilimumab 576)	Chemotherapy (n = 570)		
TRAE, ^a %	Any grade	Grade 3–4	Any grade	Grade 3-4	
Any TRAE	75	31	81	36	
TRAE leading to discontinuation ^b	17	12	9	5	
Most frequent TRAEs (≥15%)					
Rash	17	2	5	0	
Diarrhea	16	2	10	1	
Fatigue	13	1	18	1	
Decreased appetite	13	<1	19	1	
Nausea	10	<1	36	2	
Constipation	4	0	15	<1	
Anemia	4	2	32	11	
Neutropenia	<1	0	17	9	
Treatment-related deaths ^c	1 1		1		

Hellman et al, NEJM, 2018

Summary of Frontline Strategies in Advanced NSCLC

Clinical Trial	Drug	PFS (Months)	OS (Months)	PFS HR in PD-L1 neg	Toxicities Grade 3 - 5
KEYNOTE-024	Pembro	10.3	30	NA	31% vs 53%
PD-L1 ≥ 50%	Plat/Pem or Gem or Pacli	6	14.2	NA	31% VS 33%
KEYNOTE-042	Pembro	5.4	16.7	NIA	18% vs 41%
PD-L1 ≥ 1%	Plat/Pem or Pacli	6.5	12.1	NA	
IMpower150 Non-squamous	Atezo + Beva + Carbo/Pacli	8.3	19.2	0.77	60 vs 51%
	Beva + Carbo/Pacli	6.8	14.7	0.77	
KEYNOTE-189 Non-squamous	Pembro + Plat/Pem	8.8	NR	0.75	67% vs 66%
	Plat/Pem	4.9	11.3	0.75	
KEYNOTE-407 Squamous	Pembro + Carbo/Pacli or NabPacli	6.4	15.9	0.69	70% vs 68%
	Carbo/Pacli or NabPacli	4.8	11.3	0.68	
CheckMate 227 TMB≥10mut/Mb	Nivo + Ipi	7.2	23	0.49	31% vs 36%
	Plat/Pem or Gem	5.4	16.7	0.48	

Adapted from Solange Peters, 2018 ASCO Annual Meeting * This is for illustration purposes only and comparing different trials is challenging as populations, indications, and other characteristics vary.

Case Study: 1

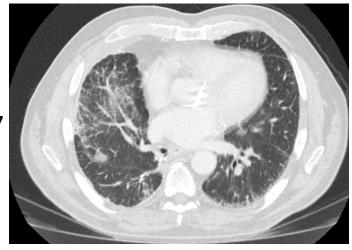
• Background:

- 58 year-old male, never smoker
- Bilateral lung metastases
- Biopsy shows:
 - Adenocarcinoma
 - KRAS mutation and TP53
 - PD-L1 is 20% positive (22C3 assay)
 - TMB is intermediate 8 mutations/MB

What do you recommend?

- 1. Pembrolizumab
- 2. Pembrolizumab + carboplatin/pemetrexed
- 3. Carboplatin/Pemetrexed
- 4. Atezolizumab + carboplatin/paclitaxel/bevacizumab

Presentation Outline


Patient Background

- 65-year-old female never smoker
- Presents with cough in June 2017
- CT imaging reveals bilateral disease
- Biopsy consistent with EGFR exon 19 adenocarcinoma
- Patient started on erlotinib and achieves response
- March 2018 CT scan demonstrates progressive disease
- Rebiopsy confirms EGFR mutation, T790M negative, PD-L1 80%

What is your management recommendation?

- 1. Osimertinib
- 2. Pembrolizumab
- 3. Carboplatin/Pemetrexed/Pembrolizumab
- 4. Carboplatin/Pemetrexed
- 5. Carboplatin/Paclitaxel/Bevacizumab/Atezo
- 6. Ipilimumab + Nivolumab

September 2017

March 2018

Thank you!

Questions?

