BASIC MECHANISM OF TUMOR IMMUNE SUPPRESSION

Zihai Li, M.D., Ph.D. Leader, Cancer Immunology Program Hollings Cancer Center Medical University of South Carolina (MUSC)

DISCLOSURE

National Institute of Allergy and Infectious Diseases

GOALS

- Understand that immune suppression is one of the hallmarks of all cancers.
- Be familiar with common cellular and molecular mechanisms of immune suppression.
- Recognize that the pervasive nature of cancer immune suppression creates ample opportunities for immunotherapy.

IMMUNE SYSTEM DOES CARE ABOUT CANCER ANSWERS FROM THE HALF-CENTURY QUEST

I Mellman et al. Nature 480, 480-489 (2011)

NEW ONCOLOGY PARADIGM IN 2015: TREATING THE IMMUNE SYSTEM, NOT THE CANCER

Chimeric Antigen Receptor

Z Li et al (2013) Exp Hematol Oncol

WHAT EVERYONE IS TALKING ABOUT

Checkpoint blockade against PD-1 pathway is broadly effective against advanced cancers:

Melanoma Lung cancer Bladder cancer Renal cell carcinoma Head and neck cancer Triple negative breast cancer Lymphoma *etc.*

CAUTION AGAINST CHECKPOINT BLOCKERS

- Clinical experience remains limited
- > 50% patients do not benefit
- No effective biomarkers to separate R from NR
- Unclear of optimal clinical use

PRINCIPLES OF ANTI-TUMOR IMMUNITY

Immunity

Tolerance

PRINCIPLES OF CANCER IMMUNOTHERAPY

Immunity

Tolerance

TUMOR IMMUNE SUPPRESSION

Immature dendritic cells

Immune checkpoints (CTLA4, PD-1 etc.)

Regulatory T and B cells

Myeloid suppressor Cells (MDSCs, Μφ)

TGF- β etc.

SUPPRESSION \neq EVASION **Suppression Evasion** Immature dendritic cells Immune checkpoints Loss of antigens (CTLA4, PD-1 etc.) Loss of antigen-**Regulatory T and B cells** presentation machineries **Myeloid suppressor Cells** (e.g., MHC, TAP) (MDSCs, Mo) Immune shield TGF- β etc.

HOLLINGS CANCER CENTE

IMMATURE (TOLEROGENIC) DC

TUMOR-DCs PROMOTE OVARIAN CANCER

Cubillos-Ruis et al. (2015) ER stress sesonr XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell, 161:1527-1538

Tolerance Exhaustion Deletion

REGULATORY T CELLS

- **1970/1980** "Suppressor" T cells proposed but discredited
- 1990s CD4+CD25+ "Regulatory T cells" by Shimon Sakaguchi

• Early 2000s Discovery of Treg master transcription factor *Foxp3* (Brunkow et al. Nat Gen 2001; Bennett et al, Nat Gen 2001; Wildin et al., Nat Gen 2001; Chatila et al., JCI 2000)

REGULATORY T CELLS

From Abbas, Lichtman and Pillai. Cellular and Molecular Immunology 6th ed, 2007

REGULATORY T CELLS

2010

Microenvironment and Immunology

Cancer Research

Selective Depletion of Foxp3⁺ Regulatory T Cells Improves Effective Therapeutic Vaccination against Established Melanoma

Katjana Klages¹, Christian T. Mayer², Katharina Lahl³, Christoph Loddenkemper^{4,5}, Michele W.L. Teng⁶, Shin Foong Ngiow⁶, Mark J. Smyth⁶, Alf Hamann⁷, Jochen Huehn¹, and Tim Sparwasser²

REGULATORY B CELLS

December 3, 2009; Blood: 114 (24)

REGULATORY B CELLS

December 3, 2009; Blood: 114 (24)

MYELOID-DERIVED SUPPRESSOR CELL (MDSC) ^a

A National Cancer Institute Designated Cancer Center

Nature Reviews | Immunology

b

TUMOR-ASSOCIATED MACROPHAGES (TAM)

A National Cancer Institute Designated Cancer Center

Nature Reviews | Immunology

TARGETING MYELOID CELLS FOR TREATMENT OF CANCER

Condeelis and Pollard (2006) Cell

TARGETING MYELOID CELLS FOR TREATMENT OF CANCER

$\textbf{TGF-}\beta: \textbf{A MASTER IMMUNE REGULATOR}$

Yang et al. (2010) Trends in Immunology

TAKE HOME MESSAGE

Immature dendritic cells

Immune checkpoints (CTLA4, PD-1 etc.)

Regulatory T and B cells

Myeloid suppressor Cells (MDSCs, Μφ)

TGF- β etc.

Cancer immune suppression

- Validation of tumor surveillance
- Opportunity for immunotherapy