Cancer Vaccine: Identifying Druggable Targets

SITC-NCI Computational Immunooncology Webinar

Wei Zheng, Dec. 2023

Outline

• Why are we excited about cancer vaccines

potential to be the next IO frontier positive clinical signals from multiple recent trials synergy with other treatment strategies

• What are the different types of cancer vaccines

tumor specific antigens vs. tumor associated antigens neoantigens from somatic variants, unannotated ORFs, fusions, splice variants antigens targeting immunosuppressive microenvironment (PDL1, IDO1, and other suppressive proteins)

• HOW do we select antigen targets for cancer vaccines

commonly used computational resources methodologies emerging technologies (TCR, single cell, spatial, digital path, high throughput immunogenicity assays)

© 2023 Moderna, inc. All rights reserved.

Why are we excited about cancer vaccine

Cancer vaccine leverages our own immune system to fight cancer

It is called a "vaccine" but it functions as a therapy

- Vaccines against certain viruses (HPV, HCV, EBV) are protecting people from certain cancers.
- We will focus on therapeutic cancer vaccine today.
- Mechanism of action: cancer antigen induced T cell
 immunogenicity
- A great introductory podcast: <u>Two Scientists Walk into a Bar</u>
 <u>Cancer Vaccine</u>

Moderna's personalize cancer vaccine, aka. individualized neoantigen therapy

Abbreviations: mRNA = messenger ribonucleic acid; ER = endoplasmic reticulum; TCR = T-cell receptor

© 2023 Moderna, inc. All rights reserved.

Cancer vaccine has potential to be the next IO frontier

"It has been decades and decades...The hallways of science are littered with failures here." -- Wellington

- This visionary review <u>Lin..Brody (2022) Nat Cancer</u>, published on 08/23/2022, has garnered considerable attention, with 137 citations as of November 30, 2023.
- Why so much enthusiasm?
- Relevance to current events: "The rapid development and success of RNA-based vaccines against SARS-CoV-2 in response to the COVID-19 pandemic have brought cancer vaccines back into focus." (Vishweshwaraiah .. Dokholyan Front Immunol. 2022)
- Clinical and translational successes: recent clinical trial successes and solid translational data demonstrated great potential
- Technological advances: could dramatically improve target ID accuracy and reduce development and manufacturing cost

early trials to acknowledge failures and advance the most promising vaccines.

© 2023 Moderna, inc. All rights reserved.

Moderna's mRNA-4157 in combination with Merck's Keytruda met primary and secondary efficacy endpoints in Phase 2 study

Interim Analysis Data (Nov 2022 cut) presented at AACR and ASCO in 2023

- mRNA-4157 (V940) and pembrolizumab demonstrated a clinically significant improvement in RFS and DMFS compared to standard of care pembrolizumab in high-risk resected melanoma, with a 44% reduction in the risk of recurrence or death and a 65% reduction in the risk of distant metastasis or death with a median of 2 years of follow-up
- mRNA-4157 (V940) in combination with pembrolizumab was well-tolerated without an increase in immune-mediated AEs compared with pembrolizumab monotherapy
- mRNA-4157 (V940) in combination with pembrolizumab received Breakthrough Therapy Designation from FDA in February 2023 and PRIME Designation from EMA in April 2023
- Updated results (Nov 2023 data cut) <u>announced Dec 14, 2023</u>: at a median planned follow-up of approximately three years, mRNA-4157 (V940) in combination with KEYTRUDA reduced the risk of recurrence or death by 49% (HR=0.510 [95% CI, 0.288-0.906]; one-sided nominal p=0.0095) and the risk of distant metastasis or death by 62% (HR=0.384 [95% CI, 0.172-0.858]; one-sided nominal p= 0.0077) compared to KEYTRUDA alone in stage III/IV melanoma patients with high risk of recurrence following complete resection

BioNTech's BNT122 induces immune responses in PDAC in Phase 1 study and Phase 2 study started in Q4 2023

BioNTech Innovation Series 11/14/2023

Autogene Cevumeran/BNT122¹ Induces Immune Responses in Adjuvant Pancreatic Cancer

BNT122 induces functional neoantigen-specific T cells Rojas et al. Nature. 2023

Half of all the patients who received the vaccine mount neoantigen-specific *de novo* T cell responses against at least one vaccine neoantigen

Vaccine-expanded T cells are durable and persist for up to 2 years

Vaccine-expanded T cells persist despite mFOLFIRINOX treatment

© 2023 Moderna, inc. All rights reserved.

Cancer vaccine (CV) is a promising pillar in combination immunotherapy strategies

Multiple clinical studies are ongoing with following combinations:

- monotherapy
- CV + ICI
- CV + chem
- CV + ICI + chem
- CV + ICI + chem + radio

Synergy between CV and TCR-T/CAR-T are also being actively explored preclinically:

• CV + cell Tx

A great review on neoantigen therapy clinical trial progresses: Xie..Fu (2023) Signal Transduct Target Ther

Figure from Zhu..Pan (2021) J Hematol Oncol

moderna

What are the different types of targets in cancer vaccines

Tumor specific antigens (TSA) vs. tumor associated antigens (TAA)

Colie..Boon (2014) Nat Rev Cancer

• TSAs

Neoantigens Viral oncoproteins (HPV, EBV)

TAAs

Cancer germline antigens (MAGE, NY-ESO-1) Tissue differentiation antigens (MART1, tyrosinase) Overexpressed antigens (HER2, CEA) Human endogenous retroviruses (HERV)

Oliveria..Wu (2023) Nat Rev Cancer

Both TSAs and TAAs have been considered as cancer vaccine targets, and the current classification helps us understand their specific properties and potential application scenarios.

© 2023 Moderna, inc. All rights reserved.

Research/clinical progress on TSA vs. TAA cancer vaccines

TSA highlights:

- \checkmark No central tolerance \rightarrow no toxicity, high immunogenicity
- ! Finding a needle in a haystack, only <5% of predicted neoantigens elicit anti-tumor T cell responses
- ! Usually unique to each tumor \rightarrow individualized therapy
- Nonsynonymous somatic variants (SNV, short INDEL's, and frameshift) can leverage cost-effective WES + RNASeq and has most established computational workflow
- Mutations in unannotated translated ORF's (nuORFs) are a new source of neoantigens, requires RiboSeq + immunopeptidomics Ouspenskaia..Regev (2022) Nat Biotech
- Fusions and other structural variants
- An excellent webinar on neoantigen discovery, especially on RNA dysregulation derived neoantigens, is covered in this series by Dr. Yi Xing in 2021

TAA highlights:

- \checkmark Present across patients \rightarrow ideal for off-the-shelf vaccine
- ! Low avidity TCR \rightarrow low immunogenicity
- ! Central tolerance \rightarrow toxicity concerns
- Cancer-testis antigens are more actively pursued due to higher tumor specificity
- TAA epitope selection can also take cross-HLA presentation into consideration, while needing multiple orthogonal validation approaches <u>Yarmarkovich..Maris</u> (2023) Nat
- Vaccines target PDL1, IDO1, and other suppressive proteins has phase 1/2 trial published in <u>Kjeldsen..Svane (2021)</u> <u>Nat Med</u>, combo with ICI currently in Phase 3 study for advanced melanoma

How do we select targets for cancer vaccines

Neoantigen identification computational workflow

Addala .. Waddell (2023) Nat Rev Clin Onc

moderna

State-of-the-art peptide MHC binding prediction models

Ensemble of artificial neural networks are the mainstream with room for improvement

- Representative algorithms: NetMHCpan, MHCflurry
- Key features to improve predictive power:

integrated training with both BA and EL data

multi-allelic data deconvolution by simultaneous align/clustering or pseudolabeling (GibbsCluster, NNAlign_MA)

Jurtz..Nielsen (2017) J Immunol

O'Donnell..Hammerbacher (2018) Cell Systems

Important databases and computational resources

CEDAR

IEDB workshop 2023, classical tools (e.g. NetMHC suite) and new ones https://nextgen-tools.iedb.org/

© 2023 Moderna, inc. All rights reserved.

moderna

Immunopeptidomics plays a critical role in neoantigen therapies

• A fantastic webinar on immunopeptidomics is covered

in this series by Dr. Bing Zhang in 2021.

XPRESIDENT® Target Platform

~~~

moderna

Genomic technology advances accelerate target selection and vaccine development

- Single-cell RNA-seq and TCR-seq in combination enables the rapid and precise identification of neoantigen-specific TCRs from peripheral blood and tumor infiltrating T cells.
- Ultra-deep genomic profiling from liquid biopsy or multiple tissue biopsies may overcome intra/inter-tumoral heterogeneity and help identify better neoantigen targets.
- Digital pathology serves as orthogonal metric to validate tumor cell content and characterize TME

Goyette.. Polyak (2021) Science

Thank you

