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What can MDSCs tell us?
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Question

Can we use MDSCs as an indicator for higher risk 
prostate cancer (PCa) and distinguish from benign 

prostatic hyperplasia (BPH)/lower risk PCa?
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What are we measuring?
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Clinical Characteristics and Categorization
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Characteristic PCa BPH HD

Total 73 48 73

Median Age 65 62 53

Age Range 44 - 86 40 - 81 22 - 79

Gleason Score

6 26

7 (3+4) 14

7 (4+3) 15

>8 18

Tumor Stage

T1c 43

T2a 2

Unknown 28

 Prospective blood collection – processed within 20 

to 30 hours

 All subjects were already scheduled to undergo a  

transrectal ultrasound guided prostate (TRUSP) 

biopsy

 Subjects not included if they had:

• previous history of cancer (excluding active 

surveillance)

• any previous medical intervention for PCa

• on active treatment for BPH



Simple cell counts can provide information about trends, but can only categorize some subjects
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Can we use machine learning (neural networks) to analyze 
the flow cytometry data to categorize patients?
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Our Question
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The Inputs – Event Counts
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Manual Gating – not enough…
*PCa (Adenocarcinoma) = Gleason ≥ 6
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Healthy Donor vs Prostate Cancer BPH vs Prostate Cancer

AUC < 0.65

AUC < 0.6



Manual Gating – not enough…
*PCa (Adenocarcinoma) = Gleason ≥ 6
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Healthy Donor vs Prostate Cancer BPH vs Prostate Cancer

AUC = 0.9290 AUC = 0.7656



What is a clinical application of this technology?
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Clinical Application: Confirmatory Testing

Risks of Screening and Overdiagnosis/Overtreatment
 1% of prostate biopsies result in hospitalization

 1 in 5 men who undergo prostatectomy may develop long-term urinary incontinence

 2 in 3 men may experience long-term erectile dysfunction

 1 in 6 men may experience long-term bothersome bowel symptoms

Source: US Preventive Services Task Force. Screening for Prostate Cancer: US Preventive Services Task Force Recommendation Statement. JAMA. 2018, 319(18):1901-1913.
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PSA is not reliable (large numbers of false positives)

20% to 50% of men diagnosed through screening may be over diagnosed

Gold Standard for Confirming  Prostate Biopsy (invasive/stressful)

Majority of biopsies are negative



NN2

NN1
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Clinical Application: Confirmatory Testing for PCa Bx
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Clinical Characteristics and Manual Counting
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Characteristic PCa BPH HD

Total 114 89 116

Median Age 67 62 52

Age Range 42 – 86 40 – 81 18 – 79

Gleason Score

6 44

7 (3+4) 26

7 (4+3) 22

>8 22

Tumor Stage

T1c 75

T2a 5

T2c 2

Unknown 32

 Additional samples were collected

 + 41 PCa

 + 41 BPH

 + 43 Male HD
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Still…simple cell counts can provide information 

about trends, but not really categorize subjects



Classified

Biopsy

Recommended

Biopsy Not

Recommended

M
e

a
s
u

re
d

Needs

Biopsy
9 1

Does Not 

Need Biopsy
24 26

Sens. (%) 90

Spec. (%) 52

Prec. (%) 27.27

Acc. (%) 58.33

 Classified 26 BPH/LR-PCa samples as “Biopsy Not Recommended”  potentially reduce 

the number of unnecessary biopsies
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Clinical Application: Confirmatory Testing

 Mis-classified 1 out of the 10 HR-PCa samples  other factors may still suggest biopsy

 subject had an abnormal DRE and a PSA > 20 ng/ml

Gleason ≥ 7(4+3)

Gleason ≤ 7(3+4) 

+ BPH



Conclusions

We demonstrated that machine learning can be used to analyze flow 
cytometry data of MDSC and lymphocytes
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We have applied this technique to distinguish between HD/PCa and 
BPH/PCa in a small number of samples

We also demonstrated that this has the potential to reduce the 
number of unnecessary prostate biopsies (confirmatory testing)
• PSA results have high false positive rate

• Over 1 million prostate biopsies performed annually - overwhelmingly negative 



Future Work

Incorporate DRE results?  PSA?  Age?  Race?
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Identify the critical relationships between cell populations that are 
used to make the classifications  unexpected relationships?

Can this technique be applied to other flow cytometry data sets with 
different cancers?  (retrospective analysis)

Can this be used for predicting tumor recurrence, treatment and/or 
immunotherapy responses?
• Collaborative projects



Thank You!
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Questions?

Visit our poster (O2) tonight if you have more questions 
or interested in more details.


