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I Our Research Teams
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the use and utility of
adoptive T-cell therapy.
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factors to improve T-cell Charge:
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a new generation of more

effective therapies.




675 ACTIVE CANCER VACCINES AND 372 IN CLINICAL DEVELOPMENT _
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Failed

CANCER VACCINES/ADJUVANTS FAILED AT PHASE III P3 trials
Vaccine name Vaccine type Target Condition NCT Number Vé_%fsifad
PROSTVAC + GM-CSF Viral vaccine Prostate cancer NCT01322490 Aug-17
__——__
Imprime PGG + cetuximab Adjuvant CD11b; CD32 Colorectal cancer NCT01309126 Jul-17
| Tecemotide +low-dose cyclophosphamide  Pepidevaccine  MUCL  NSCLC  NCTOL015443  Sep16
Tecemotide + low-dose cyclophosphamide Peptide vaccine MUC1 Breast cancer NCT00925548 Jul-14
__——__
BVNSCLC-001 + low-dose cyclophosphamide Protein vaccine NSCLC NCT00516685 Sep-11
_——__
BCG + gefitinib Bacterium vaccine Bladder cancer NCT00352079 Dec-12
_——__
HSPPC-96 Autologous protein vaccine HSP90 Kidney cancer NCT00126178 Sep-12
_——__
MyVax Protein vaccine Non-Hodgkin's lymphoma NCTO00089115 Feb-06

MyVax Protein vaccine Diffuse large B-cell ymphoma  NCT00324831 Mar-07
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I Mutational burden in different tumor types
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Fig. 2. Estimate of the neoantigen repertoire in human cancer. Data depict the number of somatic mutations in individual tumors. Categories on the right
indicate current estimates of the likelihood of neoantigen formation in different tumor types. Adapted from (50). It is possible that the immune system in
melanoma patients picks up on only a fraction of the available neoantigen repertoire, in which case the current analysis will be an underestimate. A value of 10
somatic mutations per Mb of coding DNA corresponds to ~150 nonsynonymous mutations within expressed genes.

Schumacher and Schreiber, Science 2015
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Tumor Antigen Discovery
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I Pipeline for neoepitope (personalized) vaccines

. a Patient 4 b Pre-vaccination CD4* T cells
a Peripheral blood lgﬂelantl)lr%a}c g Before . Week 16 . Week 24 . m Post-vaccination CD4* T cells
mononuclear tage ] ¥ ] ‘
Tumour cells Stage IVM1a/b (resectable) 9 4] ] ] .
procurement ~ 5ol i 11 i
\ / 8 8 %' 7 T 2 s f »
g Q P kg g
« DNA and RNA sequencing to identify 5o 4 '0 T Z 0ls JATve
tumour-specific mutations IS ‘Q\j 4 J @ L g
© i -~ T ow e
et * HLA typing £ S, 0 1 -2 T
selection o . £ I & ] 4 P T
« Prediction of personalized HLA- d)? g:c L
binding peptides e} P S —
g pep = 2 4 6 -4 2 0 2 4 6
Pools of l o) L log, (tetramer-PE) +-SNE1
synthetic long N
peptides  + Poly-ICLC {.K
Personal ‘
vaccine b — A ——o ()
manufacture Neoantigen Recurrence Anti-PD-1 Clinical
vaccination after vaccination  antibody response
Patient 1 r—s
Stage Patient 3 ot
NB/C  patient 4 —e
Patient 5 >0
X Prime Boost Boost A
Vaccine Wit l l Stage Patient 2 Ll S @ P
administration IVM1b Patient 6 . O =
0 4 8 12 16 20 24
Weeks L 1L 1 1 1 1 1 1 1 1 1 1
0 3 6 9 12 15 18 21 24 27 30 33

Ott, et.al., Nature 2017 Months after surgery

PARKER INSTITUTE B



Vaccines

3 REPRESENTATIVE TRIALS WITH NEO-ANTIGEN VACCINES

2 out 3 vaccines are peptide-based

Table 1. Summary of Neoantigen Vaccines

Carreno et al. [5] Ot et al. [4] Sahin et al. [3]
No. of patients 3 6 13
Vaccine Mature dendritic cells® Synthetic peptide+ RNA

poly IC.LC

Administration route Intravenous Subcutaneous Intranodal
BEpitope length 9 aa 15-30 aa 27 aa
No. of epitopes/patient 7 13-20 10
No. of doses 3 7 820
Immunogenicity 21 peptides 91 peptides 125 epitopes
(total no. peptides tested)
CD8" T cell response rate” 43% 16% 25%
CD4" T cell response rate” NT 60% 66%

®Ex vivo manufactured and pulsed with synthetic peptides.
PImmune response rate to MHC class | or class Il epitopes (per vaccine trial). Linette et al. 2017. Trends Mo Med

CANCER  TheAnna-Maria Kellen
@ RESEARCH Clinical Email: ClinicalAcceleratorlO @cancerresearch.org i
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I Why TESLA?

EDITORIAL
nature

biotechnology

The problem with neoantigen prediction

Personalized immunotherapy is all the rage, but neoantigen discovery and validation remains a daunting problem.

Today, a raft of software tools for predicting MHC binders are now
available (http://cancerimmunity.org/resources/webtools/). But each of
these packages has its own idiosyncrasies, strengths and weaknesses.
What's more, it has proven difficult to benchmark which tools and com-
binations of tools work best for particular contexts.

NATURE BIOTECHNOLOGY VOLUME 35 NUMBER 2 FEBRUARY 2017
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I TESLA program goals

——— —
TUMOR EPITOPE SELECTION ALLIANCE

The consortium aims to support the field’s efforts to develop safe and

efficacious neo-antigen vaccines for cancer, by:

* Delineating the variation of neoepitope predictions in existing computational pipelines

*  Generating high quality epitope validation sets that provide a basis to assess and improve prediction

pipelines

*  Elucidate the key factors for accurate neo-epitope prediction

PARKER INSTITUTE B



Project workflow
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Ne oepitope Predictions Challenge open to participants
1
Predicted neo-epitopes
v
Epitopes Validation Pipeline Functional and Binding Assays

Performance Analysis of Predictions

Report Compiled for Each Participant

Repeat for Other Tumor Type and Specific Filters
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I TESLA Participating Groups and Contributors

« 24 Academia/Non-Profits
18 Pharma/Biotech
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Operational Mechanics of the TESLA program

For each sample, participants download:
FASTQ files of tumor whole-exome sequence
FASTQ files for germline whole-exome sequence
FASTQ files for RNA-seq on tumor sample
Pre-called variants identified by Washington University
Data is downloaded from Synapse — the data hosting/sharing platform hosted by Sage Bionetworks.

Participants run their neoantigen algorithm on that data in two ways:
Participants identify their own somatic variants and in turn generate a ranked list of possible neoantigens
Participants generate a ranked list of neoantigens from the pre-called variants.
In each case, what we require for submission is a ranked list of neoantigen + HLA allele pairs

From these submitted lists, we generate a list of peptides that we will validate with at least 2 of the four
methods we are using.

Every participant will get their top 4 or 5 peptides validated with two methods

With remaining validation capacity, we select peptides that are recurrently identified in the top 50 peptides by a large
number of groups, or peptides that are unique in other ways.

Goal: validate 100 peptides/sample with at least 2 independent methods.
PARKER INSTITUTE e



(Anticipated) Learnings

A-E: Each method
will identify a distinct sets
of neoepitopes

1. How similar/distinct are
different methods and sets of
neoepitopes?

2.  Which methods generate the Validated

most validated neoepitopes? neoepitopes
found by
methods B, D,

E
3. What features of the validated

epitopes, and their identifying

. Different methods will
algorithms, can be used to make ﬁ.‘ overlap with their calls,

new, better methods? @J
‘E D ) e~

B, D, E: The unique and shared features of
successful methods. Which features matter?

PARKER INSTITUTE
ANCER IMMUNOTHERARY




TESLA: Initial tumor analyses

Melanoma

Samples

¢ Melanoma samples
with banked TIL and
PBMC

NSCLC

Samples

*NSCLC samples with
banked TIL

¢ Both untreated and
anti-PD1 tx patients

PARKER INSTITUTE
for CANCER IMMUNOTHERAPY

Sequencing

*4 tumors sequenced,
including RNAseq by
common vendor
(WUSTL)

Sequencing

*6 tumors sequenced,
including RNAseq by
common vendor
(WUSTL)

Prediction

¢ 19 team predictions

eVariant calling by each
team

¢ Overlap analysis
complete

Prediction

®24 team predictions

*Variant calling by each
team AND predictions
using common VCF file

¢ Overlap analysis
complete

Epitope
Prioritization

¢ 60+ neoepitopes
selected for validation

*Top predictions from all
teams included

¢ Neoepitopes selection
in process

* Biol. Sample Shipment

* Run Experiments

¢ Results Compilation

* Result Analyses

* Result-sharing Webinars

Reporting

Reporting



I TESLA: Initial tumor analyses
Most teams use 20-25 features for predictions

Epitope

Samples Sequencin Prediction R Validation Reportin
P 9 g Prioritization P g
Fraction of Pipelines Including This Feature
0 0.5 1

Predicting 9-mers

Somatic variant calling

Expression level of somatic muta

MHC bin g

Require variants to be nonsynonymous

Predicting 10-mers

Annotation and/or functicnal prediction of variants (e.g. ANNOVAR, VEP)
Variant calling using more than one calling program

Indel realignment

Alignment of RNAseq FASTQ

Estimation of transcript expression? (e.g. RSEM or similar

Require variants to have evidence of expression in RNA

Base quality score recalibration

Removwal of duplicate reads

Require different genotype in tumor and normal

Predicting 11-mers

Removal of variants based on alignment support (mapping quality, base quality, strand bias, depth)
Predicting 8-mers

Inferring tumor HLA

Removal of variants not located in targeted assay regions (BED file provided by TESLA)
Calling indel variants

AF DNA

Agretopicity index (differential MHC binding with respect to non-somatic peptide)
Require variants to be called by more than one calling program

Require variants have threshold variant allele frequency

Predicting normal (non-somatic) peptides

Quantitation of gene or exon expression using a count model (e.g. htseq
AF RNA

Removal of variants based on population frequency (i.e. comparison to dbSNP)
Estimation of clonality

Comparing inferred HLA from exome and RNAseq data

Proteosomal processing

TCR bin g

TAP binding (cytosol-to-ER lumen transporter)

Calling mutations in tumor HLA

Calling multi-nucleotide polymorphisms (MNPs)

Require variant also called on RNAseq data

Predicting 12-mers

Removal of variants based on a panel of normals

MHC promiscuity

Removal of contaminant reads

Calling structural variants

Predicting 13-mers

Pseudo-alignment of RNAseq FASTQ

Predicting 14-mers

Normalization of SNVs

Unigueness compared to other epitopes

Assembly of transcripts

Filtering on copy number status

PARKER INSTITUTE B




Reporting

Epitope
Prioritization
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Initial tumor analyses
Little correlation/clustering between features

TESLA:
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I TESLA functional validation methods

1. Peptide:MHC Binding

Set-up binding assay

Reaction vessel

Diluted peptide
5 ul)

MHC mix (10 ul)
purified MHC
PBS

2-4 day incubation:
room temperature
of 37°C

dilute in 0.05% NP40
range of doses

protease inhibitors
radiolabeled peptide

Determine amount of bound labeled peptide

Gel filtration MHC capture
manual G-50 or automated HPLC =0 monoclonal antibody
L Y L]
MHC* al MHC* L]
3000 e peptice N/ L labet \.
1000 AN
X 3

a, { °
J\n N7 ¢ ¢ ¢
- an'm/

Data analysis

Calculation of percent bound radioactivity or direct cpm

Calculation of percent inhibition

Calculation of IC50

A schematic overview of the steps involved in performing an MHC-peptide binding assay.

A. Sette, LIAI
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I TESLA functional validation methods

1. Peptide:MHC Binding

Set-up binding assay
Diluted peptide
(5 ul)

Reaction vessel

MHC mix (10 ul)
purified MHC
PBS

2-4 day incubation:
room temperature
of 37°C

dilute in 0.05% NP40
range of doses

protease inhibitors
radiolabeled peptide

Determine amount of bound labeled peptide

Gel filtration MHC capture
manual G-50 or automated HPLC —OR—

monoclonal antibody

Eadd ok u\“
S EYY R

Data analysis

o 1V 2 3 4 5 6 7
Time

Calculation of percent bound radioactivity or direct cpm

Calculation of percent inhibition

Calculation of IC50

A schematic overview of the steps involved in performing an MHC-peptide binding assay.

A. Sette, LIAI
PARKER INSTITUTE
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2. ex vivo stimulation

Peptides

0.0178,
»

IFN-g

N. Bhardwaj, Mt Sinai



I TESLA functional validation methods

3. Tetramer detection (FACS)

R. Schreiber, WUSTL
P. Kvistborg, NKI
PARKER INSIITUTE



TESLA functional validation methods

3. Tetramer detection (FACS)

"-.

5

MAaa

o UV > 350 nm ° Rescue peptide
T’ —_—

-
Stable MHC class | Unstable empty MHC class | complex
complex with MHC class | complex with rescue epitope

photolabile epitope
¢ Disintegration

- Sy
4

R. Schreiber, WUSTL
P. Kvistborg, NKI
PARKER INSTITUTE
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4. NP-tetramer isolation

A
E Neo -antigen E DNA-cys- Streptavudin
Photocleavalbe MHC Neo-antigen-MHC DNA-Antigen complex
B
C \_/V\/\/\./\/
Lib 1 Lib 2 o Lib 64
Universal DNA ! : :
Magnetic NP DNA barcode hybridization region
NP Barcode library Neo-antigen library
C
B J@M
V\/\/\/WW MM Ne
NP-antigen library
1st 2nd 3rd
D E s > antigen 12
Sequential barcode to identify the neo-antigen

Magnet enriched T cell NVMWMMWWM

Recover T cell for TCR a/3 sequencing

J. Heath, Caltech/ISB



Thank you!

Nadine Defranoux (PICI)

Danny Wells (PICI)
| Kristen Dang (SAGE)
SAGE Cancer Research
Bionetworks Institute

Justin Guinney
Michael Mason

Vanessa Lucey
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