NEW THERAPEUTIC DEVELOPMENT APPROACHES TO HUMAN BREAST CANCERS: HERCEPTIN UPDATE

Target ID - Target Validation in Pathogenesis - Evaluation of Therapeutic Approaches and Combinations - Clinical Application

> **Dennis J Slamon, MD, PhD** University of California at Los Angeles

Human Breast Cancer is Highly Heterogeneous

Can we decipher new molecular genetic information for these complex and variable tumors and establish a new classification with real therapeutic impact.

Molecular Diversity of Human Breast Cancers: Biologic and Therapeutic Implications

THE PAST

The "One-Size-Fits-All" Approach to Cancer

Traditional Clinical Approaches to Initial Malignancy

 SURGERY - Traditional excisional approaches with clean margins i.e. "we got it all". Newer approaches include cryosurgery, hyperthermic surgery, radiofrequency ablative surgery, etc.

 RADIATION THERAPY - Traditional external beam, IMRT, brachytherapy (implants)

 SYSTEMIC THERAPY - Cytotoxics (chemotherapy), hormonal therapy, biologic therapy We Need a Paradigm Shift - A New Approach Based on the Biology of the Disease

Premise #1 - Cancer is not a single disease.

Premise #2 - Cancer is not a single disease even within a given histology. The only thing ALL breast cancers share in common is that they arise in the organ that defines us as a species - the breast.

Premise #3 - A need to develop new therapeutic approaches that take into account #1 and #2

Lessons from the HER2 Story

- 1.) Target Identification
- 2.) Target Validation
- 3.) Preclinical Confirmation
- 4.) Determinition of Potential Usage Preclinically
- 5.) Clinical Translation Proof of Concept
- 6.) Clinical Optimization

Target Identification

The HER2 Alteration

Slamon et al. Science 1989

HER-2/neu Program at UCLA

Clinical Material (Tumor Specimens)

> Clinical Trial (Current Studies)

Therapeutic Model (Cell Line and Animal Data) Molecular Studies (DNA, RNA, Protein Analyses)

Clinical Data (Patient Information)

Basic Science Hypothesis Testing (Cell Line and Animal Data)

HER-2 Oncogene Amplification

HER-2 Oncoprotein Overexpression

Shortened Survival

Median Survival from First Diagnosis

HER-2 overexpressing3 yrsHER-2 normal6 - 7 yrs

Slamon et al, 1987

HER-2/neu Program at UCLA

Clinical Material (Tumor Specimens)

> Clinical Trial (Current Studies)

Therapeutic Model (Cell Line and Animal Data) Molecular Studies (DNA, RNA, Protein Analyses) Clinical Data (Patient Information)

Basic Science Hypothesis Testing (Cell Line and Animal Data)

Target Validation-A

Human Breast Cancer Cells

Human Ovarian Cancer Cells

*Consistent results in 9 additional Breast & Ovarian Cancer Cell Lines

Immunohistochemistry

MCF 7

Engineered HER-2 Over-expression in MCF-7 cells Increased Proliferation and Decreased Contact Inhibition

Anchorage-Independent Growth

MCF-7 CN MCF-7 H2

Growth on Plastic

Target Validation - B

Dose-dependent anti- proliferative effects of 4D5 against HER2- overexpressing breast carcinoma cells in vitro

Pegram M, Hsu S, Lewis G, et al., Oncogene. 1999 Apr 1;18(13):2241-51.

Semin Oncol 2000 Oct;27(5 Suppl 9):13-9

Preclinical Impact of Trastuzumab on Tumor Growth

Effect of Trastuzumab Treatment on HER2+ Breast Cancer Xenografts

Clinical Translation

HER-2/neu Program at UCLA

Clinical Material (Tumor Specimens)

> Clinical Trial (Current Studies)

Molecular Studies (DNA, RNA, **Protein Analyses**) **Clinical Data** (Patient Information) **Basic Science**

Hypothesis Testing

(Cell Line and Animal Data)

Phase I Clinical Trials of Anti-HER-2 MAbs

<u>Phase I</u>	<u>N</u>	Study Design	Institution
MuMAb 4D5	20	Single dose (0.12 - 500 mg)	UCLA
H0453g	15	CDDP 100 mg/m ² x 3 + rhuMAb HER-2 (10 - 500 mg x 9)	UCLA
H0452g	17	Multi-dose (10 - 500 mg)	UCLA, MSKCC, UCSF
H0407g	16	Single dose (10 - 500 mg)	UCLA, MSKCC

Herceptin in Combination with Chemotherapy

Design - Stratification to Chemotherapy

No prior anthracyclines AC = doxorubicin (60 mg/m²) or epirubicin (75 mg/m²) + cyclophosphamide (600 mg/m²) q 3 wks x 6 cycles

Herceptin in Combination with Chemotherapy

Enrollment

Total enrolled	469			
Randomization	H + CT 235		CT 234	
Subgroups				
H + AC 143	AC 138	H + T 92	T 96	

Summary: Phase III Clinical Trial Comparing Best Available Chemotherapy to Same Therapy + Herceptin

	<u>Enrolled</u>	<u>R.R. (%)</u>	<u>Dur. Res.</u>	<u>T.T.P</u>
H + CT	235	49 (53% [↑])	9.3M (58%↑)	7.6M (65%↑)
СТ	234	32	5.9M	4.6M
H + AC	138	52 (20% [↑])	9.1M (40%↑)	8.1M (33%↑)
AC	145	43	6.5M	6.1M
H + T	92	42 (163%↑)	11.0M (150%↑)	6.9M (130%↑)
Т	96	16	4.4M	3.0M

Herceptin in Combination with Chemotherapy

Survival Time

- Overall Herceptin impact on survival uncertain
 - Limited duration of follow-up (≥12 months)
 - CT alone patients allowed to enter Herceptin extension protocol
- Preliminary analysis improved 1-yr survival
 - H + CT = 78% alive
 - CT alone = 67% alive

Clinical Safety

Summary of Herceptin Safety

- Herceptin is generally well tolerated
 - Single agent
 - Combined with chemotherapy
- Most adverse events mild to moderate in severity
 - Infusion associated symptoms, including fever and chills primarily with first dose
- Serious adverse events infrequent
- Increased incidence of cardiac dysfunction, particularly when administered with anthracycline based therapy

Herceptin in Combination with Chemotherapy

Cardiac Dysfunction Outcomes (CREC)

	<u>H + AC</u>	<u>AC</u>	<u>H + T</u>	I
Cardiac Dysfunction Events (#)	<mark>39 (27%)</mark>	<mark>9</mark> (7%)	<mark>11 (12%)</mark>	<mark>2 (1%)</mark>
Herceptin Rx Post Event (#)	14	5*	6	1*
Deaths (#)	4	1	1	2
MBC	4	0	0	2
Cardiac	0	1	0	0
Pneumonia	0	0	1	0

*Herceptin extension protocol

Conclusion

◆ The results of this study indicate that Herceptin[™] (Trastuzumab) in combination with chemotherapy is well-tolerated and provides substantial clinical benefit in first-line treatment of HER-2 overexpressing metastatic breast cancer. Drug approved in Sept. 1998 as the first proto-oncogene kinase targeted therapeutic.

- Future studies of Herceptin will be important
 - Adjuvant breast cancer preclinical data show earlier rx better
 - Other combinations

Therapeutic "One-Size-Fits-All" Approach to Breast Cancer

CALGB 9344: Overall Survival

CALGB 9741 Interim Analyses

Disease-Free Survival

Overall Survival

N = 1973; Median F/U = 36 mos

Can We Do Better?

The Hope - Clinical Translation of Biologically Relevant Molecular Information Should Lead to More Effective and Less Toxic Therapeutic Approaches

The HER2 Alteration

Slamon et al. Science 1989

Disease-Free Survival

DFS BENEFIT IN SUBGROUPS HR: 1 year trastuzumab vs observation

				ΠαΖαι
		:	n	ratio
AII	H H -1		3387	0.54
Nodal status				
Any, neo -adjuvant chemotherapy	· · · · · · · · · · · · · · · · · · ·		358	0.53
0 pos, no neo -adjuvant chemotherapy	 		1100	0.52
1-3 pos, no neo -adjuvant chemotherapy	⊢−− ∎		972	0.51
≥4 pos, no neo -adjuvant chemotherapy	⊢		953	0.53
Adjuvant chemotherapy regimen				
No anthracycline or taxane	► ► -	1	203	0.64
Anthracycline, no taxane	┠╌╋╌╁┥		2307	0.43
Anthracycline + taxane	├ ── ● ───		872	0.77
Receptor status/endocrine therapy				
Negative	⊢_∎ 1		1674	0.51
Pos + no endocrine therapy	⊢−−− ∎		467	0.49
Pos + endocrine therapy	► 	1	1234	0.68
Age group				
<35 yrs	⊢−− ∎		251	0.47
35-49 yrs			1490	0.52
50-59 yrs	⊢−−		1091	0.53
≥60 yrs	⊢		549	0.70
Region				
Europe, Nordic, Canada, SA, Aus, NZ			2430	0.58
Asia Pacific, Japan	·		405	0.42
Eastern Europe			364	0.31
Central + South America	H		188	0.90
	0 Favors	Favors 2		
	trastuzumab	observation		

CARDIAC TOXICITY

Phenotypic Analysis of erbB2 Conditional Knock-out Mouse Myocardium

erbB2-floxed

erbB2-CKO

Trichrome staining

Transmission EM

 $m = \uparrow$ mitochondria Arrows = \uparrow vacuoles

> *Crone SA, et al., Nature Medicine 8: 459-465 (2002)*

Cardiovascular risk factors

Randomized	AC-T	AC-TH	ТСН
(n=3,222)	n=1,073	n=1,074	n=1,075
Age			
Median	49 yrs	49 yrs	49 yrs
Range	(23 - 74 yrs)	(22 - 74 yrs)	(23 - 73 yrs)
Risk factors (# of Pts)			
Diabetes	38	34	30
Hypercholesterolemia	54	45	43
Hyperlipidemia	20	10	12
Obesity	27	36	37
Hypertension	16	16	17
Radiotherapy (# of Pts)			
After chemotherapy	638	625	647
To left chest	335	307	323

Clinically significant cardiac events as per independent review panel

Treatment group:	AC-T	AC-TH	ТСН
(Number of patients):	(1,050)	(1,068)	(1,056)
Cardiac related death	0	0	0
Cardiac left ventricular function (CHF)			
Grade 3 / 4	3	17	4
Cardiac ischemia / infarction ++			
Grade 3 / 4	0	4	1
Arrhythmias * ++			
Grade 3 / 4	7*	4*	9*
Total clinically significant events	10	25	14

*5 arrhythmias out of 20 not yet adjudicated by Panel (2 in AC-T, 1 in AC-TH and 2 in TCH) ++Unique to BCIRG 006

Patients with >10% relative LVEF decline

	AC-T	AC-TH	ТСН	
	n = 1012	n = 1040	n = 1029	
Patients	91	180	82	
%	9 %	17.3 %	8 %	
P = 0.002 $P < 0.0001$				
P = 0.493				

LVEF at baseline

Randomized	AC-T	AC-TH	ТСН
n = 3,222	n=1,073	n=1,074	N=1,075
Type of assessment			
MUGA scan	443	455	444
Echocardiography	630	619	631
Median ejection fraction	65%	65%	65%

Mean LVEF - All Observations

Mapping the HER2 Amplicon

HER2 and TOPO II in BCIRG 006 2120 of 3222 patients analyzed

Months

% Disease Free

DFS Non Co-Amplified Topo II by Arm

Additional Observations

- LVEF declines are more persistent with AC-T and AC-TH (>550 days at last follow-up) than was previously thought
- Co-amplification of the topoisomerase II alpha gene occurs in ~35% of HER2 positive patients and may confer a therapeutic advantage to anthracycline-based:Herceptin combination regimens
- HER2 positive patients that are not co-amplified for topo II alpha (~65%) do not appear to have this same benefit and may be ideal candidates for efficacious, non-anthracycline based regimens thus avoiding potential cardiac toxicity

Can We Do Even Better?

The Hope - Further Clinical Translation of Biologically Relevant Molecular Information Should Lead to Even More Effective and Less Toxic Therapeutic Approaches

Pathway Analysis

Will molecular profiling improve our ability to ...

1) to identify pathway alterations in primary tumors?

2) identify and validate new therapeutic targets?

How Does an Alteration in This One Gene Result in So Many Changes in Biologic Behavior?

 While it is an important "inciting" event, amplification of HER2/neu does not cause it's associated clinical phenotype in isolation.

 What other genes and/or pathways need to be engaged to bring about this profound clinical picture?

 A better understanding of those genes and/or pathways directly associated with the HER2/neu alteration will lead to more effective therapeutic approaches

Global gene expression profiling

Confirmation of expression

Possible Biologic Relevance

Confirmation of Functional Relevance

CDNA Microarrays Synteni/Incyte Double Fluorescence Method GEMS 1-4, V (representing 40,000 elements)

Self RNA test

MCF-7/H2 v.s. CN

490 elements $\Delta > 2.5$ fold

Clustering: gene expression relatedness

Pathway construction:
biologically biased hierarchical ordering

Summary: cDNA Microarray	^a MCF -7 HE R -2 d ow n	[°] МСГ -7 НЕ R -2 и р
recepto rs	12	8
growth factors, cytok in es	8	5
GF induc edp rote ins	10	0
cell cycle related	1	11
apoliprot ein r e la ted	8	0
cell adhes ion-cytosk el eton	26	31
oncoge nes/tr anscription fact ors	19	7
proteas es an d protease inhibitors	3	5
DN A/chro m oso m e ma in ten a nce	5	2
drug resistanc e	0	10
compliment related	1	3
houseke eping/c hape rone prot eins	10	3
nucleotide excha ngefactors	3	1
tRNA synt hetas es	0	8
enzymes/metabolism	20	12
m isc. s u rfac e ant ig ens	0	0
uncatag orizedk nown genes	29	13
unknown genes	20	7
EST with homology	24	15
EST without hom ology	103	47
tot al changes g reater th an 2.5 fold	302	188

Selection Criteria for Analysis of Differentially Expressed Genes

- Genes falling into identifiable pathways
- Genes effected in multiple cell lines
- Changes most likely to directly contribute to the HER-2/neu phenotype
- Expression changes reversed by Herceptin

Angiogenic Pathways

Gene name	MCF-7 con vs H2	ZR-75 con vs H2	LnCap con vs H2	SKBR3 W/Hcpt
VEGF	1.64 (f)	4.5 (f) 2 7 (c)	2.2 (f)	-
Angiopoietin-1	4.2 (f)	-	-	1.9 (f)
FGFR4	2.8 (f)	2.3 (f)	-	-

Global gene expression profiling

Confirmation of expression

Possible Biologic Relevance

Confirmation of Functional Relevance

Cell Line RNA Northern: VEGF Probe

Kb

4.4

3.7

Does activation of HER-2/neu result in increased VEGF production?

Concentration of VEGF in Conditioned Media of MCF-7 Neo and MCF-7 HER-2/neu

Global gene expression profiling

Confirmation of expression

Possible Biologic Relevance

Confirmation of Functional Relevance

Are the increased VEGF levels in HER-2/neu transfectants associated with increased angiogenesis in vivo?

<u>Anglogenesis in MCF-7 Spherolds:</u>

Day 0

1 x mag. 913 μm x 789 μm

MCF-7 HER-2/neu:

1 x mag. 876 μm x 857 μm
<u>Angiogenesis in MCF-7 Spheroids:</u>

<u>Day 3</u>

MCF-7 Neo:

1 x mag. -Vessel buds starting to form -Vessels dilated

MCF-7 HER-2/neu:

1 x mag.
-Increased # of vessels
- Vessels dilated
- Vessels tortuous

<u>Anglogenesis in MCF-/ Spherolds: Day</u>

<u>MCF-7 Neo:</u> <u>1 x mag.</u> - Small capillaries and a few buds present <u>10 x mag.</u> - Vessels hemorrhaging

1 x 10 x

MCF-7 HER-2/neu:

<u>3.5 x mag.</u>
Huge vessel network
Large amount of vessel budding

<u>Anglogenesis in MCF-7 Spherolds:</u>

MCF-7 Neo:

3.5 x mag.-Mature vasculature- No vessel buds-Development stopped

MCF-7 HER-2/neu:

10 x mag.
-High number mature vessels
- Vessel buds in center of tumor
- Vasculature still growing

Does Herceptin decrease the levels of VEGF production in tumor cells?

<u>Levels of VEGF in MCF-7 Cells</u> <u>after Herceptin Treatment</u>

MCF-7 HER-2/neu Cells

MCF-7 Neo Cells

VEGF (ng/cell)

Do the Preclinical Data Translate to Findings in Clinical Specimens?

Patient and disease characteristics in node-negative and -positive primary breast cancer patients (n=611)

		Number of		
Factors		<u>Patients</u>	<u>%</u>	
		FO	644	
Age	e.	58 years	611	
Tumor size	(0)	004	~~~~	
	(<2 cm)	231	38.2	
	(2-4.9 cm)	310	51.2	
	(<u>></u> 5 cm)	64	10.6	
Number of positive nodes*				
	0	290	48.7	
	1-3	183	30.7	
	4-9	61	10.3	
	<u>></u> 10	61	10.3	
Lymph node status				
	Negative	290	48.3	
	Positive	310	51.7	
Nuclear grade*				
	1-2	368	60.4	
	3-4	241	39.6	
Hormone receptor status**				
	Negative	137	22.4	
	Positive	474	77.6	
HER-2/neu status***				
	Negative	497	81.3	
	Positive	114	18.7	
VEGF ₁₀₁ sta	tus****			
121 000	Negative	252	41.2	
	Positive	359	58 8	
VFGFsta	tus****			
165 Sta	Negative	158	25.9	
	Positivo	452	71.1	
	Positive	433	74.1	

Prognostic Significance of Detectable VEGF₁₆₅ and VEGF₁₂₁ Expression for Survival in Primary Breast Cancer

Konecny G, et al.: Clin Cancer Res in press, 2004

A biological concentration-effect relationship between VEGF expression and survival

Correlation between HER2 and VEGF₁₂₁ in Primary Breast Cancer

VEGF ₁₂₁				
	negative	positive*	Total	
HER2 negative	226 (45.5%)	271 (54.5%)	480 (100%)	
HER2 positive	26 (22.8%)	88 (77.2%)	108 (100%)	

Chi-Square Test: p < 0.001

* VEGF₁₂₁-positive - detectable VEGF₁₂₁ levels above the lower assay sensitivity of 16 pg/mg

Konecny G, et al.: Clin. Cancer Res, 2004, 10:1706-1716

Combined effects of HER2 and VEGF₁₆₅ expression on survival

Konecny G, et al.: Clin. Cancer Res. 2004, 10:1706-1716

Global gene expression profiling

Confirmation of expression

Possible Biologic Relevance

Confirmation of Functional Relevance

What is the effect of Herceptin and the VEGF antibody on tumor growth *in vivo*?

Effect of Herceptin, rhuMAb VEGF, and the Combination against HER2-overexpressing xenografts.

Do the Preclinical Therapeutic Data Translate into the Clinic?

Phase I/II clinical trial of Herceptin and Avastin in breast cancer

Hypothesis: upregulation of VEGF in HER2+ MBC contributes to the aggressive phenotype of HER2+ MBC. The 'angiogenic switch' modulated by Herceptin can be exploited in the clinic by combined blockade of these two "linked" pathways

LABC or MBC
HER2+ by FISH
ECOG 0-1
Age >18 Y
LVEF WNL

Herceptin 4mg/kg → 2mg/kg qw

Avastin dose escalation (n=24)

A 3mg/kg → 5mg/kg →10mg/kg IV d7 then q14d **Study Endpoints**

- **1.** Clinical Safety
- 2. Pharmacokinetics
- 3. Efficacy

Herceptin 4mg/kg → 2mg/kg qw + Avastin q14d

Day 0 1

1 month

9 months

Pharmacokinetics:

Mean $t_{1/2}$ bevacizumab = 19.3d Mean $t_{1/2}$ trastuzumab = 22.2d

Trastuzumab + Bevacizumab, Phase I

2-23-04

5-3-04

3-30-04

6-22-04

2-23-04

3-30-04

6-22-04

PK/Toxicity/Efficacy Data in 9 pts

 No change in the PK of either antibody when used as combo

- No untoward toxicity induced by combo 1 pt with mild ^bp treated with diazide
- 2 CR's
- ♦3 PR's
- 2 SD's > 7 months
- 2 PD's

Small Molecule Tyrosine Kinase Inhibitor

N-{3-Chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine

GW572016 is selective for *purified* HER1 and HER2 Kinase

50% Inhibition of the in vitro Kinase

Rusnak et al, Molecular Cancer Therapeutics, 1:85-94, 2001

Growth inhibition of GW572016 in human breast cancer cells

Combination Studies

Lapatinib + Trastuzumab

Does Lapatinib Work in Trastuzumab Resistant HER2 Positive Cells?

a

Study Design

Progressive, HER2+ MBC or LABC
Previously treated with anthracycline, taxane and trastuzumab*
No prior capecitabine

Stratification:

- Disease sites
- Stage of disease

R Α Ν D \cap Μ Ζ Ε N = 528

Lapatinib 1250 mg po qd continuously + Capecitabine 2000 mg/m²/d po days 1-14 q 3 wk

Capecitabine 2500 mg/m²/d po days 1-14 q 3 wk

Patients on treatment until progression or unacceptable toxicity, then followed for survival

*Trastuzumab must have been administered for metastatic disease

Time to Progession – ITT Population

* Censors 4 patients who died due to causes other than breast cancer

Challenges to combined use of targeted therapeutics

- Identifying the appropriate patient population
- Do we simply integrate new targeted therapies with established regimens? Advantages/Problems
- Is broader target specificity better than more narrow targeting?
- What are the most rational targeted combinations to test clinically?
- Can we determine the best likely combinations preclinically before going into the clinic?

Acknowledgements - UCLA

- Jane Arboleda
- Raul Ayala
- Gina Bernardo
- Jenny Chen
- Amy Cook
- Judy Dering
- Melinda Epstein
- Robert Ferdman
- Richard Finn
- Chuck Ginther
- Padraic Glaspy

- Fairooz Kabbinavar
- Gottfried Konecny
- Mark Pegram
- Lillian Ramos
- David Reese
- Hong Mei Rong
- Nishan Tchekmedyian
- Cindy Wilson
- Steve Wong

Acknowledgements (con't)

Hank

Bob

Gwen

Pam

Mark

• Genentech:

Axel Ullrich H. Michael Shepard, Fuchs, Mass, Fyfe, Klein Sliwkowski

Nat. Br. Ca. Coalition

Revion Foundation:

Ronald Perlman Jim Conroy Lilly Tartikoff

 Herceptin Clinical Investigators Network & the BCIRG

 Community-based/UCLA Clinical Research Network

♦ USC: Michael Press

The Group of 20