

IMMUNOTHERAPYTM

What's Next for Cancer Immunotherapy?

Ter<mark>enc</mark>e Rhodes, MD, PhD

Director of Immunotherapy, Intermountain Healthcare

Society for Immunotherapy of Cancer

Association of Community Cancer Centers

- BMS Speaker Bureau, SAB
- Merck Speaker Bureau

• I will be discussing non-FDA approved indications during my presentation.

Note on recent FDA approval

- Long awaited first approval in breast cancer
- Triple-negative breast cancer
 - Atezolizumab in combination with nab-paclitaxel for patients whose tumors express PD-L1 ≥ 1%
 - IMpassion130, PFS for 7.4 months versus 4.8 months

Global Immuno-Oncology Landscape

Timeline of Anti-PD-1/L1 Antibody Approvals by the FDA

Updated on Feb 19, 2019, by Jun Tang/Annie Yu Sources: CRI, CRI Analytics, and FDA

Global Immuno-Oncology Landscape

Trends in the Global Immuno-Oncology Landscape Tang et al, Nat Rev Drug Discov, Oct 2018; Created on Oct 10, 2018. Sources: CRI, CRI Analytics, Clinicaltrials.gov, and GlobalData. The Anna-Maria Kellen CANCER Clinical Comparison of global IO pipelines of 2017 and 2018 RESEARCH Accelerator Therapy type Survey year Clinical stage T-cell targeted 2018 86 49 192 (AII) immunomodulator 2017 60 369 ✓ Approved 2018 85 ✓ Phase I Other immunomodu... 2017 64 242 66 ✓ Phase II 2018 1/15 228 201 ✓ Phase III Cancer vaccine 2017 130178 ✓ Preclinical 2018 176 227 9 Cell therapy 2017 112 109 2 Clinical stage 2018 Approved 2720 Oncolytic virus 2017 3428 Phase III 2018 285 Phase II CD3-targeted bispe.. 2017 47 294 Phase I 0 100 200 300 400 500 600 700 800 900 Preclinical Number of active IO agents

Global Immuno-Oncology Landscape

233 targets and 1,227 agents in 2018

192 targets and 915 agents in 2017

Includes only Phase I, II, II

Global Immuno-Oncology Landscape

271 targets and 1,982 agents in 2017

416 targets and 3,334 agents in 2018

Add Preclinical to Phase I, II, II

Personalize 12

The landscape analysis of targets of anti-PD-1/L1 combination trials. The size of the bubble correlates to the number of trials (2017).

Annals of Oncology, Volume 29, Issue 1, 07 December 2017, Pages 84–91, https://doi.org/10.1093/annonc/mdx755

Mechanisms of resistance to immune checkpoint inhibitors

Russell W Jenkins^{1,2}, David A Barbie² and Keith T Flaherty^{*,1}

British Journal of Cancer (2018) 118, 9-16 | doi: 10.1038/bjc.2017.434

	Strategies to overcome innate/ acquired resistance	Generation tumour reactive T-cells	Effector function Activation of effector T-cell fun DO, Arg 1, PGE ₂ (5) (4) (4) (4) (4) (4) (4) (4) (4) (5) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	Memory Formation of effector memory T-cells B MDSCs Tima VISTA MHC CD4+ CD4+ Tumour cell Tumour cell
	ICI combination Single/dual ICI therapy	Examples Anti-PD-1, anti-PD-L1, anti-CTLA-4, anti-T	TIM3, anti-LAG3	Potential mechanism(s) Alternate immune checkpoints Severe T-cell exhaustion
	ICI + immune stimulating agents	Anti-OX40, anti-CD137/4-1BB, anti-CD40, Viruses, TLR agonists, vaccines, NK cell a	o, anti-ICOS, oncolytic activation (anti-KIR)	 Lack of sufficient or suitable neo-antigens Impaired processing or presentation of tumour antigens Impaired intratumoural immune infiltration Impaired IFNγ signalling Alternate immune checkpoints
	ICI + metabolic inhibitors	IDO inhibitors, adenosine receptor (A2AR)	t) inhibitors	(5) Metabolic/inflammatory mediators(6) Immune suppressive cells
	ICI + targeted therapies	BRAF + MEK inhibitors, VEGF inhibitors, PARP inhibitors, mTOR inhibitors	EGFR inhibitors,	 ③ Impaired intratumoural immune infiltration ④ Impaired IFNγ signalling ⑦ Alternate immune checkpoints
	ICI + epigenetic modifiers	Histone deacetylase inhibitors, hypomethylating agents (e.g., DNA methytransferase inhibitors)		 Impaired intratumoural immune infiltration Impaired IFNγ signalling T-cell epigenetic changes
	ICI + chemotherapy	Paclitaxel, dacarbazine, carboplatin/paclita gemcitabine	taxel, carboplatin/	1 Lack of sufficient or suitable neo-antigens
	ICI + radiation	Hypofractionated radiation, stereotactic bo	ody radiation	1 Lack of sufficient or suitable neo-antigens

Mechanisms of resistance to immune

checkpoint inhibitors Russell W Jenkins^{1,2}, David A Barbie² and Keith T Flaherty^{*,1}

British Journal of Cancer (2018) 118, 9–16 | doi: 10.1038/bjc.2017.434

(sitc)

What's Next in Immunotherapy is Vast

- Many clinical trials
- Many immunotherapy targets
- Many potential biomarkers
- Rest of presentation will discuss gene sequencing as related to immunotherapy

The first human genome sequenced

The Human Genome Project begins

Beginning in 1984, the U.S. Department of Energy (DOE), National Institutes of Health (NIH), and international groups held meetings about studying the human genome. In 1988, the National Research Council recommended starting a program to map the human genome. Finally, in 1990, NIH and DOE published a plan for the first five years of an expected 15-year project. The project would develop technology for analyzing DNA; map and sequence human and other genomes – including fruit flies and mice; and study related ethical, legal, and social issues.

1990

0

Human Genome Project completion announced

In 2003, the Human Genome Project's ambitious goals had all been met or surpassed. The sequences produced by the Human Genome Project covered about 99 percent of the human genome's gene-containing regions. Not only was the project finished two-and-a-half years ahead of time, but it was also significantly under budget. In addition, to help researchers better understand the meaning of the human genetic instruction book, the project successfully undertook a wide range of other goals: from sequencing the genomes of organisms used in disease research, to developing new technologies for studying whole genomes. The Human Genome Project has been compared to the moon-landing project as an outstanding scientific achievement of humankind.

2003

0

- 1990 to 2003 Human Genome Project Sequenced 3 billion bases in 13 years (113,958 hrs)
- Whole genome sequencing time has decreased to only 19.5 hrs
- 5,844 times faster, 0.017% of original time

Highlights

- Scalable Output Generate up to 6 Tb and 20 billion reads in dual flow cell mode with simple streamlined automated workflows
- Ultimate Flexibility Configure system to enable sequencing a trio in one day or up to 48 genomes in ~2 days
- Exceptional Data Quality Highly accurate Illumina sequencing by synthesis (SBS) chemistry delivers proven industry-leading data quality

Intermountain Precision Genomics

- 3 NovaSeqs
- Capacity of 26,280 genomes per year

Examples of sequencing efforts in immunotherapy

© 2018–2019 Society for Immunotherapy of Cancer

A Genetic Changes between Baseline Tumor and Relapse Tumor

Mutations Associated with Acquired Resistance to PD-1 Blockade in Melanoma

- Whole-exome sequencing of patient tumors at baseline and relapse on immunotherapy.
- 2 patients found to have loss-offunction mutations of JAK1 or JAK2
- 3rd patient had truncating mutation of beta-2microglobulin.

A Genetic Changes between Baseline Tumor and Relapse Tumor

Mutations Associated with Acquired Resistance to PD-1 Blockade in Melanoma

- JAK1 or JAK2 mutations resulted in lack of response to interferon gamma including insensitivity to its antiproliferative effects on cancer cells.
- Beta-2-microglobulin interfered with antigen presentation thus lack of T-cell recognition.

Sequencing pre and post treatment tissue

- Whole genome sequencing of pre and post treatment will:
 - Continue to reveal mechanisms of resistance
 - Allow for better understand of therapeutic intervention
 - Allow for smarter trial design

Tumor mutational burden

© 2018–2019 Society for Immunotherapy of Cancer

Neoantigens: self versus non-self

- Immune system's monumental task
 - Preserve cells, tissues, organs important for function
 - Bring death to microbe invaders or rogue, dysfunctional cells.
 - Higher tumor mutational load may translate to increased expression of neoantigens increasing distinguishing self from non-self.

Alexandrov L, Nik-Zainal S, et. al.

22 AUGUST 2013 | VOL 500 | NATURE | 415

Tumor mutational burden and immunotherapy

- FDA approvals
 - MSI-H or dMMR deficiency tumors (often with high mutational loads)
 - Tumor agnostic indication pembrolizumab
 - Colorectal cancers nivolumab as a single agent or in combination with ipilimumab
- Tumor Mutational Burden
 - Higher TMB correlates with increased response to checkpoint inhibition
 - Next Generation Sequencing reports include TMB with suggestions for on or off-label use of checkpoint inhibitor therapy.
 - Clinical trials such as TAPUR have high mutational load/checkpoint inhibitor arms.

Tumor mutational load predicts survival after immunotherapy across multiple cancer types

Analysis of 1,662 advanced cancer patients treated with immune checkpoint inhibitors who underwent targeted next-generation sequencing, (MSK-IMPACT).

> AMERICAN ACADEMY OF EMERGENCY MEDICINE Association of

Tumor mutational load predicts survival after immunotherapy across multiple cancer types, Robert M. Samstein, Chung-Han Lee, et al, Nature Genetics volume 51, pages202–206

	No. of patients		Cutoff	<i>P</i> -value
All samples in cohort	1,662	H=-1	-	1.59×10^{-6}
Cancer type				
Bladder	214	┝┈═┈┥	17.6	0.040
Breast	45	} → 4	5.9	0.605
ER+	24	╞───────┥	6.8	0.287
ER-	21	├ ─── ┤	4.4	0.731
Unknown primary	90	├──── ─┤	14.2	0.155
Colorectal	110	├───── ─┤	52.2	0.031
Esophagogastric	126	┠──┳─┤┥	8.8	0.221
Glioma	117	⊢_ ∎}	5.9	0.465
Head and neck	138	┝─────┤│	10.3	7.42×10^{-3}
Melanoma	321	⊢ ∎−−}	30.7	0.067
Non-small cell lung	350	┝╌┳╌┥	13.8	2.30×10^{-4}
Renal cell carcinoma	151	┝──■┤┤	5.9	0.569
Drug class				
Combo	260	┝──■──┥	-	0.018
CTLA4	146	} ∎ }	-	1.89 × 10 ⁻³
PD-1/PDL-1	1,256		-	6.95 × 10 ⁻⁴
		0.12 0.25 0.50 1.0 2.0 4.0		

<-- Better overall survival-----HR------Worse overall survival-->

Is there one TMB cutoff across histologies or a cut off for each histology?

CCC

Association of Community Cancer Center

sit

Society for Immunotherapy of Cancer

Tumor mutational load predicts survival after immunotherapy across multiple cancer types, Robert M. Samstein, Chung-Han Lee, et al, Nature Genetics volume 51, pages202–206

Sequencing plasma cell free DNA

© 2018–2019 Society for Immunotherapy of Cancer

DURVALUMAB WITH OR WITHOUT TREMELIMUMAB VS PLATINUM-BASED CHEMOTHERAPY AS FIRST-LINE TREATMENT FOR METASTATIC NON-SMALL CELL LUNG CANCER: MYSTIC

Naiyer Rizvi,¹ Byoung Chul Cho,² Niels Reinmuth,³ Ki Hyeong Lee,⁴ Myung-Ju Ahn,⁵ Alexander Luft,⁶ Michael van den Heuvel,⁷ Manuel Cobo,⁸ Alexey Smolin,⁹ David Vicente,¹⁰ Vladimir Moiseyenko,¹¹ Scott Antonia,¹² Sylvestre Le Moulec,¹³ Gilles Robinet,¹⁴ Ronald Natale,¹⁵ Kazuhiko Nakagawa,¹⁶ Luping Zhao,¹⁷ Koustubh Ranade,¹⁸ Paul Stockman,¹⁹ Vikram Chand,¹⁷ Solange Peters²⁰

Rizvi, Annals of Oncology (2018) 29 (suppl_10): x39-x43. 10.1093/annonc/mdy511

MYSTIC STUDY DESIGN

Phase 3, global, randomised, open-label, multicentre study

Trial did not meet primary endpoints

Rizvi, Annals of Oncology (2018) 29 (suppl_10): x39-x43. 10.1093/annonc/mdy511

BLOOD TUMOUR MUTATIONAL BURDEN ANALYSIS

- tTMB ≥10 mut/Mb cutoff used to define high TMB in CheckMate 227 for the primary PFS endpoint¹
- This correlated with a bTMB ≥16 mut/Mb cutoff in MYSTIC (overall tTMB vs bTMB correlation: rho=0.6)

	Durvalumab (n=374)	Durvalumab + tremelimumab (n=372)	Chemotherapy (n=372)
tTMB, n (%)	145 (38.8)	164 (44.1)	151 (40.6)
bTMB, n (%)	286 (76.5)	268 (72.0)	255 (68.5)

TMB evaluable dataset

Large bTMB dataset: 809 samples (72.4% of patients)

Society for Immunotherapy of Cancer

ADVA

OS: bTMB SUBGROUPS (EXPLORATORY ANALYSIS)

bTMB <16 mut/Mb population

bTMB ≥16 mut/Mb population

Rizvi, Annals of Oncology (2018) 29 (suppl_10): x39-x43. 10.1093/annonc/mdy511

bTMB in POPLAR and OAK studies

Correlation between tTMB and bTMB: rho=0.64; 95% confidence interval

Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab

Gandara D, Paul S, et. al. NATURE MEDICINE | VOL 24 | SEPTEMBER 2018 | 1441-1448

bTMB in OAK study

OAK and POPLAR studies: improved survival with atezolizumab vs docetaxel (n=1,512)

Chalabi, Annals of Oncology (2018) 29 (suppl_10): x17-x23. 10.1093/annonc/mdy486

© 2018–2019 Society for Immunotherapy of Cancer

bTMB in POPLAR

Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab

Gandara D, Paul S, et. al. NATURE MEDICINE | VOL 24 | SEPTEMBER 2018 | 1441-1448

bTMB in OAK

Favors atezolizumab Favors docetaxel

HR

Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab

Gandara D, Paul S, et. al. NATURE MEDICINE | VOL 24 | SEPTEMBER 2018 | 1441-1448

Sequencing the microbiome

© 2018–2019 Society for Immunotherapy of Cancer

- Gut microbiota play a key role in mediating tumor responses to both chemotherapy and immune checkpoint inhibition (ICI) in mouse models
- Anticancer treatments and co-medications such as antibiotics (ATB) and proton pump inhibitors (PPI) alter the gut microbiome
- Studies in patients responding to ICI have shown:
 - higher diversity of the gut (but not oral) microbiome at baseline
 - enrichment of particular bacteria species

advanci Canc

Do ATB and PPI compromise ICI efficacy? IMMUNOTH

Multiple reports show ATB use within predefined windows compromises the efficacy of ICI across tumor types

- Melanoma ٠
- NSCLC •
- Renal cell cancer
- Urothelial cancer •

Derosa et al., Ann Oncol 2018; Do et al., ASCO 2018; Elkrief, in press; Huemer et al., Oncotarget 2018; Kaderbhai et al., Anticancer Res 2017; Lalani et al., ASCO GU 2018, Matson et al., Science 2018; Routy et al., Science 2018; Tinsley et al. ASCO 2018;

No evidence of PPI compromising clinical benefit of ICI

- NSCLC ٠
- Renal cell cancer ٠
- Urothelial cancer ٠
- Ovarian cancer .

Mukherjee et al., J Oncol Pharm Pract 2018; Routy et al., Science 2018

ADVANCES IN CONCERNING CONCERNING Effects of antibiotics and proton pump inhibitors in NSCLC patients treated with atezolizumab or docetaxel

Pooled analysis of the OAK and POPLAR trials

M. Chalabi,¹ A. Cardona,² D. Nagarkar,³ A. Dhawahir Scala,² M. Albert,³ M. Kok,¹ T. B. Powles^{4,} F. Herrera⁵ *On behalf of the imCORE working group of early career investigators*

¹Netherlands Cancer Institute, ²F. Hoffmann-La Roche, ³Genentech, ⁴Barts Cancer Institute, ⁵Ludwig Institute for Cancer Research

Mances in Marces in Marces

Sitc > Society for Immunotherapy of Cancer

- Retrospective analysis of patients from POPLAR and OAK studies who received ATB or PPI within 30 days before and after beginning treatment
- Objectives: analyze the effect of ATBs or PPIs on overall survival (OS) and progression-free survival (PFS)
- Statistical analysis using univariate and multivariate Cox models
 - Risk factors with a p-value < 0.15 were further evaluated in a multivariate analysis where the best model was chosen via variable selection

Society for Immunotherapy of Cancer

OAK and POPLAR studies: improved survival with atezolizumab vs docetaxel (n=1,512)

Shorter OS observed in the atezolizumab ATB+ group

© 2018–2019 Society for Immunotherapy of Cancer Chalabi, Annals of Oncology (2018) 29 (suppl_10): x17-x23. 10.1093/annonc/mdy486

Shorter OS observed in the atezolizumab PPI+ group

© 2018–2019 Society for Immunotherapy of Cancer Chalabi, Annals of Oncology (2018) 29 (suppl_10): x17-x23. 10.1093/annonc/mdy486

What's Next in Cancer Immunotherapy

- Sequencing
 - Whole genome
 - Next Generation Sequencing gene panels
 - Microbiome
- Promising therapies:

Trends in the Global Immuno-Oncology Landscape Tang et al, Nat Rev Drug Discov, Oct 2018; Created on Oct 10, 2018. Sources: CRI, CRI Analytics, Clinicaltrials.gov, and GlobalData.

Thank you

© 2018–2019 Society for Immunotherapy of Cancer