#### Society for Immunotherapy of Cancer (SITC)

Immunotherapy for the Treatment of Brain Metastases

Ann W. Silk, MD Rutgers Cancer Institute of New Jersey & Robert Wood Johnson Medical School

Advances in Cancer Immunotherapy™ - New Jersey March 28, 2015



#### **Outline**

- 1. Background
- 2. Immune surveillance and response in the CNS
- 3. Clinical experience with immunotherapy for the treatment of brain metastases
- 4. Rationale for combination therapies

#### Brain Metastases (BM)

- 20-40% of cancer patients will develop BM
  - Lung (50%)
  - Breast (15%)
  - Melanoma (50-65%)
- · The incidence of BM is increasing
  - HER2-positive breast cancer (30-55%)
  - ALK mutated NSCLC







## Radiation therapy is the backbone of treatment

| One BM  | A few BM                        | Numerous BM                     |
|---------|---------------------------------|---------------------------------|
| Surgery | Stereotactic radiosurgery (SRS) | Whole Brain Radiotherapy (WBRT) |

# Limits of cytotoxic and targeted therapy

 Level of most cytotoxic and targeted drugs in brain metastases is a fraction of level in blood due to the blood brain barrier

#### The Blood Brain Barrier



# Anatomy of the Blood Brain Barrier (BBB)

- Tight junctions
- Glia limitans foot processes of astrocytes
- P-glycoprotein pumps



# Cerebrospinal fluid (CSF) acts as lymph in the brain

- CSF is made by the choroid plexus
- Fills the ventricles and diffuses through the brain parenchyma
- Carries soluble antigens derived from the CNS
- Collects in the perivascular (Virchow Robin) spaces and drains to the subarachnoid space

## CSF carrying soluble antigens flows out through perivascular (Virchow-Robin) spaces



#### CSF drains to blood and lymph

- CSF drains from the subarachnoid space
  - To venous blood
  - To lymph
- Antigen presenting cells in the deep cervical lymph nodes can recognize soluble antigens in the CSF
- APCs in the deep
   cervical lymph nodes
   prime T cells ->
   adaptive immunity



#### **Outline**

- 1. Background
- 2. The Blood Brain Barrier (BBB)
- 3. Immune surveillance and response in the CNS
- 4. Clinical experience with immunotherapy for the treatment of brain metastases
- 5. Rationale for combination therapies

#### Is the brain a sanctuary?

- The brain contains no lymph nodes
- The parenchyma of the brain does not have conventional antigen presenting cells



#### Evidence for immune privilege

 In experimental models, antigens such as tumor cells, viruses, bacteria that are placed inside the brain parenchyma will <u>not</u> trigger a cell-mediated immune response

 Peripheral immunization with an intra-parenchymal self antigen will trigger a brisk and robust immune response.

## Experimental autoimmune encephalomyelitis: A mouse model of multiple sclerosis



# Clearly immune privilege in the brain is not absolute

- T-cells can cross the BBB
  - In health
    - Surveillance
  - In response to pathogens and cancer
    - Infectious meningitis and encephalitis
    - Brain metastases
  - In autoimmune disease
    - Multiple sclerosis
    - Ipilimumab-related hypophysitis

#### Memory T cells cross the BBB



## How does immune surveillance in the CNS occur?



- Memory T cells enter CNS independent of antigen specificity
- Exposed to APC-like cells in the perivascular space
- In the absence of a non-self antigen, T cells flow with the CSF into the subarachnoid space
- T cells exit the CNS with the CSF via nasal mucosa to deep cervical lymph nodes

# Memory T cells are responsible for immune surveillance in CNS



- T cells enter the CNS through the subarachnoid space (SAS)
- APCs in SAS can re-prime the T cells
  → inflammation

# BM often associated with edema



- Edema is caused by fluid in the tissue around the tumor
  - Mediated by VEGF
  - Perivascular space expands to accommodate edema
  - Soluble tumor antigens may be contained in the CSF
  - CSF drains into blood and/or lymph
- Can an antigen presenting cell in the draining lymph nodes initiate an adaptive immune response?

## Immune infiltrate in BM and more favorable survival



- Resected brain metastases of patients with melanoma
- Peritumoral CD3+ and CD8+ cells were associated with prolonged survival



CD8+ T cells (blue)

## Immune infiltrate in BM and more favorable survival

- Immunostaining study of 287 brain tumors
  - 170 BM (77 Lung, 44 Melanoma, 22 Others, 10 Renal)
  - 117 glioblastoma multiforme (GBM)

|                     | ВМ  | GBM |           |
|---------------------|-----|-----|-----------|
| Dense CD3+<br>TILs  | +++ | +   | p < 0.001 |
| Dense CD8+<br>TILs  | +++ | +   | p < 0.001 |
| Dense PD-1+<br>TILs | +++ | +   | p < 0.001 |

- Dense CD3+ tumor infiltrating lymphocytes (TILs) correlated with more favorable survival in BM patients (12 vs. 9 months; p = 0.015)
- Suggests that immunotherapy may be a viable strategy for BM

#### **Outline**

- 1. Background
- 2. Immune surveillance and response in the CNS
- 3. Clinical experience with immunotherapy for the treatment of brain metastases
- 4. Rationale for combination therapies

#### Interleukin-2 for BM

- IL-2 has not been used extensively in patients with untreated BM due to the risk of cerebral edema
- Patients with stable previously irradiated or asymptomatic BM do not appear to have excess toxicity with IL-2 therapy
- The response rate in previously untreated brain metastases was 5.6% in one series
- Complete responses in the CNS have been reported

#### Ipilimumab in melanoma BM

- Phase II in 72 patients with BM
- n=51 were neurologically asymptomatic,
  n=21 were neurologically symptomatic
- 40% had received previous radiation therapy (wash-out period 2 weeks)

#### Ipilimumab in BM

- Treated with ipilimumab 10mg/kg IV Q3 weeks x 4, followed by Q12 week maintenance
- Response was assessed after 12 weeks using modified WHO and immune related response criteria
- Previously irradiated brain lesions could not be index lesions unless they were progressive despite radiation therapy

## Activity of Ipilimumab in BM in 51 neurologically asymptomatic pts

|                            | Modified<br>WHO criteria | Immune-related Response Criteria |
|----------------------------|--------------------------|----------------------------------|
| Global objective response  | 5/51 (10%)               | 5/51 (10%)                       |
| CNS objective response     | 8/51 (16%)               | 8/51 (16%)                       |
| Non-CNS objective response | 7/51 (14%)               | 7/51 (14%)                       |

- No patients had a discordant (CNS vs. non-CNS) response status
- Response rate was similar using either set of response criteria

#### Activity of Ipilimumab in BM

- Response rate in the CNS
  - 16% in asymptomatic subjects
  - 5% in symptomatic subjects
    - 1 CR, 0 PR
- 2 year overall survival ~25% in the asymptomatic subjects

#### Activity of Ipilimumab in BM



#### Ipilimumab + Fotemustine

- Fotemustine can cross the BBB
- 86 patients with metastatic melanoma were treated with ipi + fotemustine
  - including 20 with asymptomatic BM
  - 35% of the patients with BM had received previous RT to the brain



#### Ipilimumab + Fotemustine

- 40 patients in the study population achieved disease control (47%), as did 10/20 patients with BM (50%).
- Of the 13 patients with BM who did not have previous radiotherapy, 5 (38%) of them had a complete response in the brain

#### **Outline**

- 1. Background
- 2. Immune surveillance and response in the CNS
- 3. Clinical experience with immunotherapy for the treatment of brain metastases
- 4. Rationale for combination therapies

#### Combinations: Radiation therapy (RT)

- RT induces damage to the BBB and the tumor DNA → increases tumor immunogenicity
- Clinical experience: Ipilimumab + stereotactic radiosurgery (SRS)
- 77 patients with metastatic melanoma underwent SRS
  - 27 of them had ipilimumab (before or after SRS)
- Median survival
  - 21.3 vs. 4.9 months in those who received ipilimumab vs. those who did not



#### Combinations: Ipilimumab + RT

|      | No Ipilimumab (n=37) | Ipilimumab (n=33) |
|------|----------------------|-------------------|
| WBRT | 21                   | 16                |
| SRS  | 16                   | 17                |

- A retrospective study of 70 patients with melanoma brain metastases treated with RT
- 33 patients received ipilimumab
  - Either before or after RT
  - Mostly sequential, 5 patients treated concurrently

#### Improved survival with ipilimumab and SRS



Ipilimumab is associated with significantly decreased risk of death HR= 0.43, p=0.005

#### 62M: Concurrent Ipi and WBRT

**PRE-WBRT** 



**POST-WBRT** 







#### 82F: Concurrent Ipi and SRS





# Ipilimumab appears to impact survival in patients treated with SRS

Median survival (in months) from the date of RT

|                        | N= | Not treated with<br>lpilimumab | Treated with<br>lpilimumab | Difference  |
|------------------------|----|--------------------------------|----------------------------|-------------|
| Knisely et al<br>2012  | 77 | 4.9                            | 21.3                       | 16.4 months |
| Silk <i>et al</i> 2013 | 70 | 4.0                            | 19.9                       | 15.9 months |

#### **Future directions**

- PD-1 and PD-L1 antibodies
- Checkpoint inhibitors + RT
- Vaccines: cell-based vaccines, oncolytic viruses
- Adoptive T cell strategies

#### Select anti-PD-1 studies in BM

- MK-3475 (Pembrolizumab) in Melanoma and NSCLC Patients With Brain Metastases
  - ClinicalTrials.gov Identifier: NCT02085070
- A Multi-Center Phase 2 Open-Label Study to Evaluate Safety and Efficacy in Subjects With Melanoma Metastatic to the Brain Treated With Nivolumab in Combination With Ipilimumab Followed by Nivolumab Monotherapy (CheckMate 204)
  - ClinicalTrials.gov Identifier: NCT02320058

#### Lessons and Take Home Messages

- Immunotherapy has a therapeutic advantage over cytotoxic drugs in CNS tumors because T-cells can cross the BBB
- The BBB is not absolute. Memory T cells provide immune surveillance in the CNS and mediate inflammation in response to antigens
- Combinations of immunotherapies and/or immunotherapy in combination with radiation therapy may be effective at treating and even preventing BM in many types of cancer





#### Thank You