Neoadjuvant Immunotherapy for glioblastoma

SITC 2019 A Tale of Two Brain Tumors. Primary versus Metastatic CNS Tumors November 9, 2019

> Robert M. Prins, Ph.D. Depts. of Neurosurgery and Pharmacology David Geffen School of Medicine at UCLA

Disclosures

• Merck – Received research funding.

Consultant for biomarker development

Introduction

- Recurrent GBM is associated with a median survival of 6-9 months
- PD-1 blockade as monotherapy has demonstrated benefit in multiple cancer types
- GBM is generally considered not to be immunogenic
 - Relatively moderate mutational burden
- Only reported responses to immune checkpoint blockade in GBM have been case studies of individuals with hypermutated genotype and mismatch repair deficiency

Recent Developments in how the timing of checkpoint

blockade can impact anti-tumor immune responses

medicine

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Neoadjuvant nivc immune microenv glioblastoma

Kurt A. Schalper^{1,12}, Maria E. Rodrigu Angelo Porciuncula¹, Miguel A. Idoatu Sonia Tejada⁵, Pedro Berraondo [®]⁸, Miriam Giraldez¹⁰, Iosune Goicoech Jose L. Perez-Gracia ^{® 2,3,4,13} and Igna

Shaojun Zhang⁸, Alexander J. Lazar Alexandre Reuben^{®3}, Miles C. Andre James Allison⁵, Michael T. Tetzlaff^{9,11}

Neoadjuvant PD-1 Blockade in Resectable Lung Cancer

P.M. Forde, J.E. Chaft, K.N. Smith, V. Anagnostou, T.R. Cottrell, M.D. Hellmann, M. Zahurak, S.C. Yang, D.R. Jones, S. Broderick, R.J. Battafarano, M.J. Velez, N. Rekhtman, Z. Olah, J. Naidoo, K.A. Marrone, F. Verde, H. Guo, J. Zhang, J.X. Caushi, H.Y. Chan, J.-W. Sidhom, R.B. Scharpf, J. White, E. Gabrielson, H. Wang, G.L. Rosner, V. Rusch, J.D. Wolchok, T. Merghoub, J.M. Taube, V.E. Velculescu, S.L. Topalian, J.R. Brahmer, and D.M. Pardoll FOCUS ARTICLES

unotherapy promotes :umoral and systemic ent glioblastoma

>ey R. Orpilla⁵, Willy Hugo⁶,
ng⁵, Benjamin M. Ellingson^{3,7},
guchi⁹, Lin Du⁹, Gang Li^{3,9}, William H. Yong¹⁰,
³, Eudocia Q. Lee¹¹, David A. Reardon¹¹,
;hiemphu¹, Jennifer L. Clarke¹⁵,

Isabel C. Arrillaga-Romany¹⁶, Howard Colman¹², Thomas J. Kaley¹³, John F. de Groot¹⁴, Linda M. Liau^{3,5}, Patrick Y. Wen^{11,19} and Robert M. Prins (2,3,5,17,19*

Development of neoadjuvant surgery trial design to study the effects on the tumor microenvironment

Exploratory Biomarkers to evaluate the influence of PD-1 mAb on the TME and peripheral blood

- Gene expression profiling (Nanostring PanCancer Immune Profiling Panel and RNA-seq). We will assess Gene Expression signature within tumors. *Performed/Analyzed at UCLA*
- Quantitative T cell receptor Sequencing (*Performed at Adaptive Biotech./Analyzed at UCLA*). We will assess estimated TIL count and T cell receptor diversity.
- Multiplex Immunofluorescence. We will quantitatively assess % CD8, %CD8+PD1+ TIL, %PD-L1+ cells (CD45 vs. GFAP). Performed/Analyzed at UCLA.
- Mass Cytometry. High dimensional analysis of immune cell phenotypes after treatment. *Performed at UCLA/Analyzed at UCLA with help from the Parker Institute.*

Clinical Responsiveness: Somatic mutations vs. IFN-y

Signature

- No difference in somatic mutation burden between
- groups
- Nanostring PanCancer Immune Profiling Panel
- IFN-γ related Gene Expression
 Signature can predict "hot" and "cold" tumors

Cell Cycle signature downregulation following neoadjuvant PD-1

mAb blockade

Willy Hugo, Ph.D.

T Cloughesy and A Mochizuki, et.al. *Nature Medicine* 2019

Extended Survival with neoadjuvant PD-1 mAb blockade

In-Depth Analysis of the TME:

Digital Spatial Profiling

Bulk RNA Analysis in follow-on patients

Digital spatial profiling (DSP) Example – Patient NU1, mR

ROIs with <25% immune cells

- Ki67 discriminates therapy response from non-response in bulk mRNA
- Microscopically, Ki67 is only a marker for response in immune cell poor regions
- A deeper analysis revealed that proteins such as B7-H3, PTEN, and STING TEME173 determine the level of Ki67 in immune cell poor regions (Unpublished with Jim Heath and Alphonsus Ng)

Immune Cell Isolation protocol from tumors

Mass Cytometry – High Dimensional Analysis of PBMC and TIL

Normal Grade I Grade II Grade IV Grade IV Metastasis

Ag	Description	Ag	Description	Ag	Description
Im	imune context	Adl	nesion molecules	Fc & co	omplement receptors
CD8	CD8 T cells	CD68	Glycoprotein	CD16	Low affinity FCGR3a
CD20	B cells	CD169	Sialoadhesin	CD32	Low affinity FCGR2a
CD3	T cells	CD206	Mannose receptor	CD64	High affinity FCGR1a
D-1	Inhibitory R.	CD166	Glycoprotein	CD11b	Complement R. 3
CD7	NK cells	CD54	ICAM-1	CD88	Complement R. 5
CD4	CD4 T cells	CD82	Glycoprotein	TLR/	cytokine receptors
nmunor	nodulatory molecules	CD81	Tetraspanin	CD119	IFNg R.
PD-L2	Coinhibitory ligand	Sca	wenger receptors	CD123	IL-3 R.
PD-L1	Coinhibitory ligand	CD163	High affinity S.R.	CD14	LPS co-R.
CD40	Costimulatory R.	CD204	Class A S.R.	CD71	Transferrin R.
SLAMF7	Costimulatory ligand	CD36	Class B S.R.	CD304	VEGF co-R.
CD86	Costimulatory ligand		Ectoenzymes	Che	mokine receptors
HLA-ABC	Ag presentation	CD13	Metalloprotease	CXCR4	Chemokine R. 4
HLA-DR	Ag presentation	CD38	cADP ribose hydrolase		
Ag	Description	Ag	Description	Ag	Description
Im	mune context	CD8	TCR co-R.	CD40	Costimulatory R.
CD45	Pan immune	Immunor	modulatory molecules	CD80	Costimulatory ligand
CD15	Granulocyte	PD-1	Coinhibitory R.	CD86	Costimulatory ligand
CD20	B cells	LAG-3	Coinhibitory R.	Cyto-/c	chemokine receptors
CD68	Macrophage	CTLA-4	Coinhibitory R.	CCR7	Chemokine R. 7
CD11c	DC cells	TIM-3	Coinhibitory R.	CD25	IL-2 R.
CD206	Pro tumor macrophage	CD28	Costimulatory R.	CD127	IL-7 R.
CD123	pDC	ICOS	Costimulatory R.		Ectoenzyme
Tra	nscription factor	OX40	Costimulatory R.	CD38	cADP ribose hydrolase
OXP3	TReg master regulator	4-1BB	Costimulatory R.	Com	plement receptors
то	CR co-receptors	GITR	Costimulatory R.	CD11b	Complement R. 3
CD3	TCR co-R.	HLA-DR	Ag presentation		Cell division
204	TCR co.R	CD7	Costimulatory R	KL67	Proliferation marker

Alex Lee and Aaron Mochizuki

Cell²ress

Immunity Article

UCLA Health System

Mass Cytometry of tumor infiltrating immune cells PD-1 Blockade alters the Myeloid cell:TIL Ratio

Unpublished

Single cell RNA Seq of tumor infiltrating immune cells

Туре	Cell #	Tumor #
AA.TIL	1286	2
GBM.new.TIL	41138	10
GBM.rec.TIL	24145	5
GBM.pembro.TIL	33325	9
met.pembro.TIL	27569	3
met.TIL	27355	7
OG.TIL	5249	1

Parameters:

- 20% cutoff of mitochondria, giving a total of 160,067 cells
- Used the GBM.pembro.TIL (n=9) as reference to speed up computation. Memory required was ~ 100GB.
- The remaining mitochondrial percentage and the cell cycle score difference were regressed out.
- The clustering was done using PCA with 30 dimensions.
- UMAP was run using n.neighbors=10 and min.dist=0.1 and seed.use=22. The clustering was done using resolution = 0.2. Unpublished

Single Cell RNA seq of tumor infiltrating immune cells

- C0 = Activated Effector CD8 (CD27, IFNG, CCL5, GZMK, PDCD1)
- C1 = Myeloid doublet (CD14, MHC II+, complement factors, APOE)
- C2 = Memory (IL7R, CD40LG, CCR7)
- C3 = NK and T gamma delta (CD16, TRDC, GNLY)
- C4 = Treg (FOXP3, IL2RA, CTLA4, TNFRSF4)
- C5 = FGFBP2+ NK cell
- C6 = Proliferating (MKI67+)
- C7 = B cells (CD79A/B, MS4A1, immunoglobulin, MHC II)

<u>CD8 T cells' monocle2 trajectory</u> (GBM recurrent without vs. with aPD1)

Unpublished

Aaron Mochizuki, D.O. Pediatric Neuro-Oncology Fellow

3.

0

-3

-6

UMAP_2

Myeloid Cells

UMAP_1

0

23

5

Unpublished

-5

Role of PD-1 Blockade, Interferon-gamma Receptor

signaling, and Cell Cycle Activity

Conclusions

- Neoadjuvant PD-1 mAb blockade is associated significant survival benefit over adjuvant therapy alone
- Benefit appears to be driven by systemic expansion of tumor-specific T-cells with high interferon-γ signaling and downregulation of the cell cycle signature
- See coordinated T cell responses only in the neoadjuvant treatment arm

Funding Sources

- Merck & Co., Inc. Investigator Studies Program
- Adaptive Biotechnologies, Inc.
- NIH SPORE in Brain Cancer (P50CA211015)
- Parker Institute for Cancer Immunotherapy
- Ben and Catherine Ivy Foundation
- Defeat GBM Program of the NBTS
- The Cancer Research Institute
- Uncle Kory Foundation
- Ziering Family Foundation

Acknowledgements

UCLA

- Tim Cloughesy, MD
- Linda M. Liau, MD, PhD
- Aaron Mochizuki, DO
- William Yong, MD
- Joey Orpilla, BS
- Willy Hugo PhD
- Alexander Lee, BS
- Frances Chow, MD
- Mildred Galvez, BS
- Richard Everson, MD
- Harvard-Dana Farber Cancer Inst
 - Patrick Wen, MD
 - David Reardon, MD
- Ivy Foundation Early Phase Clinical Trials Consortium

T Cell Receptor Sequencing – immunoSEQ platform (Adaptive Biotechnologies)

Cohort & Sample Overview

 29 subjects have 1 tumor sample taken at time of surgery + 3 blood samples taken at baseline (pre-treatment), presurgery, and at Cycle 2 post-treatment

Differential Abundance of TCR Clones

Patient SK-08 (OS= 416 Days) Tx Group A – Neoadjuvant+Adjuvant PD-1 mAb Blockade

Differential Abundance of TCR Clones Patient MA-31 (OS=58 days) Tx Group B – Adjuvant only PD-1 mAb Blockade

²⁸ Clonal expansion (relative to Baseline) in the peripheral

repertoire: At surgery vs on-Tx

Influence of PD-1 Blockade on the Tumor Microenvironment

T Cloughesy and A Mochizuki, et.al. *Nature Medicine* 2019.

