Altered myelopoiesis in cancer

Vincenzo Bronte Verona University Hospital

vincenzo.bronte@univr.it

Disclosure

- **iTeos Therapeutics SA**, scientific advisory board and research collaboration
- Tusk Therapeutics Ltd, scientific advisory board, research support and collaboration
- **IO Biotech ApS**, shareholder and scientific advisory board
- BioNTech AG, patent and research collaboration
- Ganymed Pharmaceuticals AG, research collaboration
- Xios Therapeutics, scientific advisory board
- **Codiak BioSciences**, scientific advisory board

Cancer stroma comprises different immune cells

Invasive Tumor

microenvironment

Core of Primary Tumor

microenvironment

D. Hanahan , R. A. Weinberg, Cell, 2011

Metastatic Tumor

microenvironment

Meta-analysis of 124 published articles studying the impact of cytotoxic T cells, memory T cells, and T-helper subpopulations with regards to prognosis of patients with cancer

20 cancer types analyzed

lable 1 the association of minimule cett mitthates with prognosi		
Cells	CD8*CD45RO* T cells	T _H 1 cells
Melanoma	Good ¹⁰³⁻⁰⁰⁶	
Head and neck cancers	Good ^{30,109,110}	
Breast cancer	Good	 Good^{115,116} None¹¹⁷
Bladder cancer	Good ^{118,119}	
Ovarian cancer	Good ¹²⁰⁻¹²²	Good ^{123,124}
Oesophageal cancer	Good ^{126,127}	Good ¹²⁸
Colorectal cancer	Good ^{5,6,26,15,36,63,79,130-146}	Good ^{5,36,79}
Renal cell carcinoma	* Good ¹⁵ * Poor ¹⁵	Good ⁷¹
Prostatic adenocarcinoma	Good ¹⁵¹⁻¹⁵³	
Lung carcinoma	* Good ^{13,154-157} * None ¹⁵⁸	Good ¹¹
Pancreatic cancer	Good ¹⁶³	
Cervical cancer		Good ¹⁶⁶
Anal squamous cell carcinoma		
Brain cancer		
Hepatocellular carcinoma	* Good ^{367,168} * Poor ³⁰	Good ¹⁶⁹
Gastric cancer		Good ¹⁷¹
Medulloblastoma		Good
Merkel cell carcinoma	Good ¹²⁴	
Urothelial cell carcinoma	Good ¹¹⁹	
Follicular lymphoma and Hodgkin's lymphoma		

W. H. Fridman et al., Nat. Rev. Cancer, 2012 Courtesy of Jerome Galon

Meta-analysis of 200 published articles studying the impact of cytotoxic T cells, tertiary lymphoid structures, T regulatory lymphocytes and macrophages with regards to prognosis of patients with cancer

Computational meta-analysis of expression signatures from 18,000 human tumors reveals positive and negative correlations between tumor-infiltrating leukocytes and patient survival

A. J. Gentles et al., Nat. Med., 2015

The oncogene-dependent control of the immune landscape

CMS2, CMS3 and CMS4 tumors

Low frequency of CD8⁺ T cells

Immunogenicity

M. Binnewies et al., Nat. Med., 2018

Myeloid cells of innate immunity

Cell type

Monocytes/Macrophages

Neutrophils

Dendritic cells

Mast cells

Eosinophils

Main function in immune response

Phagocytosis, inflammation, tissue repair

Phagocytosis, inflammation, antimicrobial peptide production

Activation of naïve T cells

Inflammation, vascular permeability

Defense against parasites

Steady-state hematopoyesis

M. G. Manz and S. Boettcher, Nat. Rev. Immunol., 2014

Monocyte and macrophage developmental pathways (before birth and under steady-state condition)

F. Ginhoux and S. Jung, Nat Rev Immunol., 2014 F. Ginhoux and M. Guilliams, Immunity, 2016

Classic and alternative activation of macrophages

K. Abbas K, A. H. Lichtman. Cellular and Molecular Immunology, 7th Edition

TAM heterogeneity in clear cell renal carcinoma unveiled by mass cytometry

CD38+CD204+CD206 TAMs correlate with immunosuppression (*PD-1+T* cells and Treg)

S. Chevrier et al., Cell, 2017

CD38 as mechanism of acquired resistance to PD-1/PD-L1 blockade through the activation of adenosine receptor

L. Chen et al., Cancer Discovery, 2018

Genmab Announces that Janssen Will Stop Studies of Daratumumab in Combination with Anti-PD-(L)1

Company Announcement

- Based on a recent planned review, the Data Monitoring Committee (DMC) recommends Phase Ib/II study of daratumumab plus atezolizumab (anti PD-L1 antibody) in patients with previously treated non-small cell lung cancer to be terminated.
- Phase I MMY2036 study of daratumumab plus JNJ-63723283 (anti PD-1 antibody) in patients with multiple myeloma, discontinued
- Health Authorities have been informed about these events and Janssen has contacted its partner companies conducting daratumumab and anti-PD-(L)1 combination studies to discuss ceasing enrollment and dosing of the combination while the data is being further investigated

Copenhagen, Denmark; May 26, 2018 – Genmab A/S (Nasdaq Copenhagen: GEN) announced

Received 4 Nov 2015 | Accepted 2 Jun 2016 | Published 6 Jul 2016

DOI: 10.1038/ncomms12150

OPEN

Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards

Vincenzo Bronte^{1,*}, Sven Brandau², Shu-Hsia Chen³, Mario P. Colombo⁴, Alan B. Frey⁵, Tim F. Greten⁶, Susanna Mandruzzato^{7,8}, Peter J. Murray⁹, Augusto Ochoa¹⁰, Suzanne Ostrand-Rosenberg¹¹, Paulo C. Rodriguez¹², Antonio Sica^{13,14}, Viktor Umansky^{15,16}, Robert H. Vonderheide¹⁷ & Dmitry I. Gabrilovich^{18,*}

The IL-23/IL-17 axis in inflammation and cancer

Calcinotto A, et al. IL-23 secreted by myeloid cells drives castration-resistant prostate cancer. Nature. 2018

Kortlever RM, et al. Myc cooperates with Ras by programming inflammation and immune suppression. Cell. 2017

Coffelt SB, et al., IL-17-producing $\gamma\delta$ T cells and neutrophils conspire to promote breast cancer metastasis. Nature. 2015

TAMs of different origin in pancreatic cancer

Zhu et al., Immunity, 2017

The metabolic control of T cell activation by myeloid cells

Amino acid metabolizing enzymes with immuno regulatory activity

Arginine + 4 O_2 + 3 H⁺ + 3 NADPH \longrightarrow 2 citrulline + 4 H₂O + 3 NADPH⁺ + 2 NO

Arginine + $H_2O \longrightarrow$ ornithine + urea

Tryptophan + $O_2 \longrightarrow$ formylkynurenine

IL4i1 model (Malayan pit viper LAAO)

 $AA + H_2O + O_2 \rightarrow oxo acid + H_2O_2 + NH_3$

P. J. Murray, Nat. Immunol., 2016

Metabolic and molecular pathways for ARG1 induction

ARG1 genetic ablation favors immunotherapy

I. Marigo et al., Cancer Cell, 2016

D. H. Munn and A. L. Mellor, Trends Immunol., 2016

SHARE

Derek Lowe's commentary on drug discovery and the pharma industry. An editorially independent blog from the publishers of *Science Translational Medicine*. All content is Derek's own, and he does not in any way speak for his employer.

.

3

CANCER

IDO Inhibitors Hit a Wall

By Derek Lowe 9 April, 2018

ARG1 and IDO1 cross-talk

G. Montanelli et al., Curr. Opin. Pharmacol, 2017 G. Montanelli et al., Immunity, 2017

Cold and immune-evasive tumors: the micro-environment as target

Cold and immune-evasive tumors: the micro-environment as target

Cancer cell molecular programs

β**-catenin**

Enzymes

IDO1, Arginase 1

- Chemochines, cytokines and chemoattractants
 CCL2, CCL3, CCL4, CSF-1
- Signaling and transcription factors in myeloid infiltrating cells

ΡΙ3Κγ, **c/EBP**β, **miR142-3**p

Myeloid cell activation and biology

Anti-CD38, TLR4 agonists, STING agonists, TLR9 agonists

Targeting PI3Kγ in myeloid cells

W. Zheng and J. W. Pollard, CellResearch, 2016M. M. Kaneda et al., Nature, 2016O. De Henau et al., Nature, 2016

Conclusions

- Targeting myeloid cells is likely not going to be effective as single therapy but can enhance cancer immunotherapy.
- Single or combinatorial approaches depleting macrophages for prolonged times might have secondary effects on tissues homeostasis.
- Treatments that acts on cell plasticity might offer some advantages over simple depletion.
- Intratumoral activation can promote a sustained T cell response.
- Further characterization of tumor-infiltrating myeloid cells might provide better molecular targets for intervention.

Therapeutic interventions on TAMs to improve cancer therapy

V. Bronte and P. J. Murray. Nat. Med. 2015

CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis

Bin-Zhi Qian¹, Jiufeng Li¹, Hui Zhang¹, Takanori Kitamura¹, Jinghang Zhang², Liam R. Campion³, Elizabeth A. Kaiser³, Linda A. Snyder³ & Jeffrey W. Pollard¹

Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis

Laura Bonapace^{1,2*}, Marie-May Coissieux^{1*}, Jeffrey Wyckoff¹†, Kirsten D. Mertz^{3,4}, Zsuzsanna Varga³, Tobias Junt^{2*} & Mohamed Bentires-Alj^{1*}

Targeting cEBP β in myeloid cells

I. Marigo et al., Immunity, 2010

Among miRs down-regulated in tumor-infiltrating myeloid cells, miR-142-3p promotes the macrophage differentiation by controlling cEBP β

N. Sonda et al., 2013, Immunity

PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity

Sydney R. Gordon^{1,2,3,4,5}, Roy L. Maute^{1,3,4,5}, Ben W. Dulken^{1,6}, Gregor Hutter^{1,7,8}, Benson M. George^{1,3,4,5,6}, Melissa N. McCracken^{1,3,4,5}, Rohit Gupta⁹, Jonathan M. Tsai^{1,3,4,5,6}, Rahul Sinha^{1,3,4,5}, Daniel Corey^{1,3,4,5}, Aaron M. Ring¹⁰, Andrew J. Connolly⁵ & Irving L. Weissman^{1,3,4,5}

Tumor-specific CD8⁺ T cells collaborate with monocytederived Tip-DCs

Intratumoral transfer of Nos2⁺ TipDCs is required for tumor rejection following ACT

I. Marigo et al., Cancer Cell, 2016

Interference with Treg triggers a CD8⁺ T cell-dependent maturation of monocytes into Batf3 dendritic cells

Gardner and Ruffel, Immunity, 2018 Sharma et al., I, Immunity, 2018

Conclusions

- Targeting myeloid cells is likely not going to be effective as single therapy but can enhance cancer immunotherapy.
- Single or combinatorial approaches depleting macrophages for prolonged times might have secondary effects on tissues homeostasis.
- Treatments that acts on cell plasticity might offer some advantages over simple depletion.
- Intratumoral activation can promote a sustained T cell response.
- Further characterization of tumor-infiltrating myeloid cells might provide better molecular targets for intervention.

Refining therapeutic strategies to alter myeloid compartment in cancer

