

Emerging Agents and Combination Sagar Sardesai MD, MPH

Assistant Professor The Ohio State University Comprehensive Cancer Center

Disclosures

- Consulting Fees: Novartis, Immunomedics, Gilead, Astrazeneca, Daiichi Sankyo, Biotheranostics
- Contracted Research: Industry funded research
- I will be discussing non-FDA approved indications during my presentation.

Breast Cancer Immunotherapy

Cell & Molecular Immunology volume 17, pages807–821 (2020)

Anti PD-1/ PD-L1 combinations

#LearnACI

© 2021–2022 Society for Immunotherapy of Cancer

Advances in Cancer Immunotherapy™

Anti PD-1/PD-L1 in BC Immunotherapy

- Anti PD-1 / PD-L1 monotherapy is associated with poor response rates in heavily pre-treated MBC.
- However, chemotherapy + ICI combinations demonstrate higher efficacy and offer survival advantage in early high risk TNBC and PD-L1 CPS≥ 10 front line mTNBC
- Other novel combinations?

Fig: Mechanism of Action anti PD-1 / PD-L1 checkpoint inhibition

Front Pharmacol. 2020 May 15;11:722 Ann Oncol. 2019 Mar 1;30(3):397-404. Lancet. 2020 Dec 5;396(10265):1817-1828. N Engl J Med. 2020 Feb 27;382(9):810-821

© 2021–2022 Society for Immunotherapy of Cancer

PARPi combinations

Society for Immunotherapy of Cancer

Phase I/2 MEDIOLA BC – Olaparib + Durvalumab

✓ N= 34 w gBRCA1/2,HER 2 neg MBC
✓ BRCA1 (16) vs. BRCA2 (18)
✓ NO new safety signals
✓ ORR at 12 weeks: 63·3%
✓ DCR at 28 weeks: 50·0%
✓ NO PD-L1 , TMB, HR & PAM50.
✓ Findings c/w Keynote162-TOPACIO

Dual Blockade (CTLA4 + PD-1/PD-L1)

Dual CTLA4 + PD-1 blockade

Fig: PFS and OS in n=18 patients receiving Durvalumab + tremelimumab for advanced refractory ER+ & TNBC

A) Upregulation of CD8, granzyme A, perforin gene expression & B) High neoantigen burden and C) TMB associated with improved response

in ER+ & TNBC cohorts

Months

p = 0.22

- Overall

- ER+

-TNBC

Dual ICI blockade in Metaplastic Breast Cancer DART (S1609) Cohort 36

✓ N =17, All pre-treated & chemo refractory

- ✓ All responses, ongoing > 2years in duration
- ✓ No correlation with TMB , PDL-1 expression
- ✓ Prior PD-1/PDL-1 therapy associated with PD
- ✓ NO new safety signals , but higher toxicity

✓ All responders with G3 irAEs

Fig: Swimmer plot depicting responses and PFS seen in n=17 patients with refractory metastatic metaplastic TNBC

#LearnAC

PI3K/AKT/PTEN

Ipatasertib + Atezolizumab shows favorable safety

- RP2D of IPAT : 400mg with q3week Atezo
- Ipatasertib + Atezolizumab downregulates stromal T-Regs and upregulates iTILs CD8+ T cells in patients with advanced refractory solid tumors.

A reduction in CD4+ FOXP3+ T regs was seen in all patients after 2 weeks of Ipatasertib regardless of PI3K pathway mutation status Responding patients had a >400% mean increase in intratumoural CD8+ T cell infiltration by Cycle 3, effectively switching from a *desert* phenotype to an *inflamed* phenotype

Ipat + Atezo + taxane shows promising efficacy

Triplet shows ORR ~ 70% in front line mTNBC independent of PDL-1 or PI3K pathway alt.

#LearnACI © 2021–2022 Society for Immunotherapy of Cancer

Trial/ ClinicalTrials.gov Identifier	Regimen	Prior Lines ^a	Biomarker	N	ORR, %	Median PFS (95% CI), mo	Median OS (95% CI), mo
Targeted therapy combination trials	s						
PARP inhibitors							
TOPACIO/ KEYNOTE-162 NCT02657889	Niraparib + pembrolizumab	1–3	PD-L1 + or –, BRCAm + or –	55	21	2.3 (2.1–3.9)	
			BRCAm +	15	47	8.3 (2.1–NR)	
			BRCAm –	27	11	2.1 (1.4–2.5)	
MEDIOLA NCT02734004	Olaparib + durvalumab after 4 wk run-in	≤2	Germline BRCAm	17	58.8	4.9	20.5
AKT inhibitors							
Schmid AACR NCT03800836	Nab-/paclitaxel + ipatasertib + atezolizumab	0 (DFS ≥12 mo)	PD-L1 + or -	26	73		
MEK inhibitors							
COLET NCT02322814	Nab-paclitaxel vs paclitaxel + cobimetinib + atezolizumab	0	PD-L1 + or -	90	29.0 vs 34.4	7.0 (3.7–12.8) vs 3.8 (3.0–7.4)	NR (10.2–NR) vs 11.0 (9.5–NR)
Novel immunotherapy agent trials							
IL-2 agonists							
PIVOT-02 NCT02983045	NKTR-214 + nivolumab	0–2	PD-L1 + or -	38	13.2		
CAR T cells							
NCT01837602	Intratumoral c-MET mRNA CAR T cells	Any	PD-L1 + or -	6	0		

Resulted Targeted Therapy and Novel Immunotherapy Agent Anti–PD-1/L1 Trials in Metastatic

Abbreviations: BRCAm, BRCA mutation; DFS, disease-free survival; NR, not reached; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; TNBC, triple-negative breast cancer. Prior lines of systemic therapy for metastatic disease.

© 2021–2022 Society for Immunotherapy of Cancer

Ongoing Phase II/III studies with targeted combinations

Trial/ ClinicalTrials.gov Identifier	Regimen	Lines [®] or Stage	Primary Endpoint	N
ETCTN NCT02849496	Olaparib (PARPi) ± atezolizumab: BRCAm-positive	any	PFS	72
DORA NCT03167619	Olaparib (PARPi) \pm durvalumab: sporadic or germline BRCAm	≤2 including current platinum	PFS	60
BEGONIA NCT03742102	Paclitaxel + durvalumab \pm capivasertib (AKTi) or danvatirsen (STAT3i) or oleclumab (anti-CD73)	0	AE rate	120
InCITe NCT03971409	Avelumab + binimetinib (MEKi) or utomilumab (IgG2 antibody) or anti-OX40 antibody	0–3	ORR	150

Emerging Agents – Oncolytic Viruses (OV)

- Oncolytic viruses are derived or engineered from naturally occurring viruses to target and specifically kill cancer cells.
- OVs mediate anti-tumor effects through direct tumor cell lysis and activation of the anti-tumor immune response : Tumor-associated antigens (TAAs)

Immunosuppressive TME.

 OVs have proven safe, with fewer treatment-related severe adverse events (SAEs, grade 3–4), however have shown poor responses as monotherapy in MBC

OVs in MBC

	Herpesvirus	Adenovirus	Vaccinia Virus	Measles Virus	Reovirus
Structure					
Genome	152kb dsDNA	36kb dsDNA	190kb dsDNA	16kb ss(-)RNA	23kb dsRNA
Virion Size	200 nm	70-90 nm	70-100 nm	100-200 nm	75 nm
Receptor	HVEM, nectin1/2, HSPG	CAR, CD46, DSG-2	glycosaminoglycans/ laminin, MARCO	CD46	carbohydrates, JAM-A
Oncolytic Variants	ICP34.5 &ICP37 deletion (T- VEC), ICP34.5 deletion (HSV1716)	E1B deletion (Onyx- 015, H101) Δ24- RGD (DNX-2401), E2F-Δ24-RGD (ICOVIR-5), Ad11/3 chimera (Enadenotucirev)	TK deletion (Pexa-Vec)	Attenuated strains: edmonston-Zagreb (MV-EZ), Edmonston (MV- CEA, MV-NIS)	Wild-type serotype 3 (Reolysin)
Advantages	High transduction efficiency, broad tumor tropism, large genome, easily manipulated	Extensively studied, ameanable to genetic manipulation, mild/self-limiting disease	Broad tropism with high transduction, large genome, easily manipulated	Extensively studied, easily manipulated, used safely as vaccine	Well understood biology, natural cancer cell selectivity, low pathogenicity
Disadvantages	pre-existing immunity, major human pathogen	pre-existing immunity, high liver tropism, receptor availability	Rapid neutralization, biology not completely understood	pre-existing immune response due to vaccination	Sensitive to anti- viral responses

#LearnACI © 2021–2022 Society for Immunotherapy of Cancer

Watanbe N et al, Mol Ther. 2021 Feb 3;29(2):505-520.

A randomized phase II study of weekly paclitaxel with or without pelareorep in patients with metastatic breast cancer: final analysis of Canadian Cancer Trials Group IND.213.

Bernstein V¹, Ellard SL², Dent SE³, Tu D⁴, Mates M⁵, Dhesy-Thind SK⁶, Panasci L⁷, Gelmon KA⁸, Salim M⁹, Song X³, Clemons M³, Ksienski D¹⁰, Verma S³, Simmons C⁸, Lui H⁴, Chi K⁸, Feilotter H¹¹, Hagerman LJ⁴, Seymour L⁴.

#LearnACI © 2021–2022 Society for Immunotherapy of Cancer

Ongoing trials

Agents	Trial / Phase	Setting
Pelareorep, letrozole, atezolizumab, trastuzumab	A Window-of-Opportunity Study of Pelareorep in Early Breast Cancer / Phase 1	Neoadjuvant
Ipilimumab, nivolumab, talimogene, laherparepvec	Ipilimumab, Nivolumab, and Talimogene Laherparepvec before Surgery in Treating Participants with Localized, Triple-Negative or Estrogen Receptor-Positive, HER2-Negative Breast Cancer- Deleted / Phase 1	Neoadjuvant
Paclitaxel, pelareorep, avelumab	A Study to Assess Overall Response Rate by Inducing an Inflammatory Phenotype in Metastatic BReast cAnCEr with the Oncolytic Reovirus PeLareorEp in CombinaTion with Anti-PD-L1 Avelumab and Paclitaxel – BRACELET-1 Study / Phase 2	Metastatic
ADV/HSV-tk, valacyclovir, radiation: SBRT, pembrolizumab	SBRT and Oncolytic Virus Therapy before Pembrolizumab for Metastatic TNBC and NSCLC / Phase 2	Metastatic
PVSRIPO	Examining Bioactivity of PVSRIPO in Invasive Breast Cancer / Phase 1	Metastatic
Pelareorep, retifanlimab	INCMGA00012 and Pelareorep for the Treatment of Metastatic Triple-Negative Breast Cancer, IRENE Study / Phase 2	Metastatic
Cyclophosphamide and JX-594 dose escalation, cyclophosphamide and JX-594, cyclophosphamide	A Study of Metronomic CP and JX-594 in Patients with Advanced Breast Cancer and Advanced Soft-Tissue Sarcoma (METROmaJX) / Phases 1 and 2	Metastatic
TBio-6517, pembrolizumab	Study of TBio-6517, Given Intratumorally, Alone or in Combination with Pembrolizumab, in Solid Tumors / Phases 1 and 2	Metastatic
ONCR-177, pembrolizumab	Study of ONCR-177 Alone and in Combination with PD-1 Blockade in Adult Subjects with Advanced and/or Refractory Cutaneous, Subcutaneous or Metastatic Nodal Solid Tumors / Phase 1	Metastatic

© 2021–2022 Society for Immunotherapy of Cancer

Emerging Agents – Anti tumor vaccines

SITC-0720-15

Anti Tumor Vaccines in BC

- Breast cancer vaccines can be divided into different types based on platforms and formulations
- They all need to make the targeted antigen recognized by the autologous immune system to induce a therapeutic effect.
- Adjuvant of the vaccine plays a vital role as they are able to enhance antigen immunogenicity and regulate the immune response.
- Administration routes vary depending on vaccine construct (intranodal vs. SQ vs. intradermal)
 #learnACI

© 2021–2022 Society for Immunotherapy of Cancer

Clinical Trial Reference	Trial Phase	Setting	Targeted Tumor Antigen	Design and Arms	Breast Cancer Subtype	Primary Objectives	Outcomes
PRESENT Trial	Ш	Adjuvant	HER2- derived	Vaccination Arm: E75 + GM-CSF (N=376)	HLA-A2/A3+, HER2 low-	DFS	RR at 16.8 months interim analysis: 9.8% (vaccinated group) versus 6.3% (control group)
NCT01479244 US Military Cancer Institute Clinical Trials Group Study I-01 and I-02	1/11	Adjuvant	peptide E75 HER2- derived peptide E75	Control Arm: Placebo + GM-CSF (N=382) Vaccination Arm: E75 + GM-CSF of different doses (N=108) Control Arm: Observation	expressing (IHC 1/ 2+), node-positive HLA-A2/A3+, HER2-expressing, node-positive or high-risk node-	Safety, optimal dosing of immune	(P = 0.07). Based on these data, the study was terminated for futility. Five-year DFS: 89.7% (vaccinated group) versus 80.2% (control group) (P = 0.08). Toxicities were minimal.
NCT01570036	Ш	Adjuvant	HER2- derived peptide E75	(N=79) Vaccination Arm: E75 + GM-CSF + trastuzumab (N=136) Control Arm: Placebo + GM-CSF + trastuzumab	negative HLA-A2/A3+, HER2 low- expressing (IHC 1/ 2+), node-positive	response DFS	The estimated 24-month DFS: 89.8% (vaccinated group) versus 83.8% (control group) (P= 0.18).
NCT00524277	Ш	Adjuvant	HER2- derived peptide GP2	(N=139) Vaccination Arm: GP2 + GM-CSF (N=89) Control Arm: GM-CSF alone (N=91)	HLA-A2+, HER2- expressing, node- positive or high- risk node-negative	DFS, RR	The estimated 5-year DFS: 88% (vaccinated group) versus 81% (control group) ($P = 0.43$); 100% (HER2 3+ vaccinated patients) versus 89% (HER2 3+ placebo patients) ($P=0.03$)
US Military Cancer Institute Clinical Trials Group Study I-04	T	Adjuvant	HER2- derived peptide GP2	Single arm: GP2 + GM- CSF of different doses (N=18)	HLA-A2+, HER2- expressing, node- negative	Safety, immune response	Immune response was induced in all the enrolled patients. Toxicities were minimal.
NCT00524277	Ш	Adjuvant	HER2- derived peptide AE37	Vaccination Arm: AE37 + GM-CSF (N=153) Control Arm: GM-CSF alone (N=145)	HLA-A2+, HER2- expressing, node- positive or high- risk node-negative	RR	RR at 25-month median follow-up: 12.4% (vaccinated group) versus 13.8% (control group) (P=0.70).
US Military Cancer Institute Clinical Trials Group Study I-03	T	Adjuvant	HER2- derived peptide AE37	Single arm: AE37 + GM- CSF of different doses (N=15)	HLA-A2+, HER2- expressing, node- negative	Safety, immune response	Immune response was induced in all the enrolled patients. Toxicities were minimal.
NCT00399529	Ш	Metastatic	HER2	Single arm: HER2 GM- CSF-secreting tumor cell vaccine + cyclophosphamide + trastuzumab (N=20)	Stage IV, HER2- expressing	Safety, CBR	CBR at 6 months and 1 year was 55% and 40%, respectively. Toxicities were minimal.
NCT00140738	1/11	Metastatic	HER2	Single arm: recombinant HER2 protein + AS15 (N=40)	Stage IV, HER2- expressing	Safety, CBR	Clinical activity was observed with 2/40 objective responses and prolonged stable disease for 10/40 patients. Immunization was associated with minimal toxicity.
NCT02061332	Ш	Neoadjuvant	HER2	Single arm: HER2 dendritic cell vaccine with different routes (N=27)	HER2-expressing DCIS or early invasive breast cancer	Safety, immune and clinical response	Vaccination by all injection routes was well tolerated. There was no significant difference in immune response rates by vaccination route.

CBR, clinical benefit rate; DCIS, ductal carcinoma in situ; DFS, disease-free survival; GM-CSF, granulocyte-macrophage colony-stimulating factor; HER2, human epidermal growth factor receptor 2; HLA, human leukocyte antigen; IHC, immunohistochemistry; RR, recurrence rate.

Emerging Agents – Adoptive Cell Therapy

ACT Approach

#LearnACI © 2021–2022 Society for Immunotherapy of Cancer

CAR-T cell therapy in MBC

Safety and Efficacy of Intratumoral Injections of Chimeric Antigen Receptor (CAR) T Cells in Metastatic Breast Cancer

Julia Tchou ¹ ², Yangbing Zhao ³ ⁴, Bruce L Levine ³ ⁴, Paul J Zhang ³, Megan M Davis ⁴, Jan Joseph Melenhorst ³ ⁴, Irina Kulikovskaya ⁴, Andrea L Brennan ⁴, Xiaojun Liu ⁴, Simon F Lacey ⁴, Avery D Posey Jr ⁵ ³ ⁴, Austin D Williams ⁵ ², Alycia So ⁵ ², Jose R Conejo-Garcia ⁶, Gabriela Plesa ⁴, Regina M Young ⁴, Shannon McGettigan ⁴, Jean Campbell ⁷, Robert H Pierce ⁷, Jennifer M Matro ⁵ ⁸, Angela M DeMichele ⁵ ⁸, Amy S Clark ⁵ ⁸, Laurence J Cooper ⁹, Lynn M Schuchter ⁵ ⁸, Robert H Vonderheide ⁵ ⁸, Carl H June ¹ ³ ⁴ Phase I study of immunotherapy for advanced ROR1+ malignancies with autologous ROR1-specific chimeric antigen receptor-modified (CAR)-T cells.

Jennifer M Specht, Sylvia Lee, Cameron Turtle, Carolina Berger, Josh Veatch, Ted Gooley, Erin Mullane, Colette Chaney, Stanley Riddell, David G. Maloney

University of Washington, Seattle, WA; Fred Hutchinson Cancer Research Center, Seattle, WA; Fred Hutchinson Cancer Research, Seattle, WA; Seattle Cancer Care Alliance, Seattle, WA

Cancer Res (2019) 79 (4_Supplement): P2-09-13.

Ongoing trials / CAR T cell targets

CAR-T cell target	Clinical Trials.gov identifier	Clinical trial phase
Mesothelin	NCT02580747	Phase I
Mesothelin	NCT02792114	Phase I
cMet	NCT01837602	Phase I
MUC1	NCT02587689	Phase I/II
TnMUC1	NCT04025216	Phase I
MUC1*	NCT04020575	Phase I
NKG2D Ligand	NCT04107142	Phase I
ROR1	NCT02706392	Phase I

#LearnACI

© 2021–2022 Society for Immunotherapy of Cancer

Bispecific Antibodies

BsAbs- Mechanism of Action

- Bispecific Antibodies (BsAbs) are recombinant protein constructs that can simultaneously bind two separate and unique antigens (usually on effector and tumor cell)
- This cross-linking of tumor and effector cells increases their proximity while simultaneously triggering T cell activation through ADCC

BsABs under current investigation

Non- HER 2 Targeting

HER 2 Targeting

	Listings	N	Phase	Target]	NCT number	Ν	Phase	Status	Targets
	NCT04276493 NCT02892123	50 234	Ib/2	2 distinct sites on HER2		NCT03524261	90	2	Recruiting	CD3 and MUC1
	NCT03821233	174	1	2 sites on HER2 (plus ADC delivery)		NCT01730612	23	1	Not	
	(5 studies)	187	1 & 2	Biparatropic HER2						
	NCT03321981 NCT02912949	101 250	1 1/2	HER2 and HER3		NCT03927573	24	1	Recruiting	PSCA
	NCT03983395 158								CD3 and 5T4	
	NCT03272334	33		WAICH	PDL1 and CD27					
	NCT01022138	32	2	HER2/CD3 (ER/PR+/HER2 Neg)		NCT04224272	86	2a	Recruiting	2 distinct sites on HER2
	NCT03842085	34	1	2 sites on HER2, afucosylated		NCT03849469	242	1	Recruiting	CTLA4 and LAG3
	NCT04501770	32	1	HER2 and CD3			- 12		Recruiting	
	NCT03912441	15	1	2 sites on HER2		NCT04429542	292	1/1b	Recruiting	EGFR and TGFβ
	NCT04143711	220	1/2	HER2 and undisclosed NK engager						
	NCT03448042	449	1/2	HER2 and CD3		NCT03752398	164	1	Recruiting	PD1 and ICOS
#lean	NCT04162327	191	1a/1b	HER2 and PD-L1	ĺ	NCT03620201	20	1	Recruiting	TGFb and PD-L1
II LOUI				7						

© 2021–2022 Society for Immunotherapy of Cancer

Summary

- Rapidly evolving IO landscape with several novel agents and combinations in clinical development.
- Current strategies aim to improve antigenicity & immunogenicity while decreasing immune-tolerance in conventionally 'cold' breast tumors
- ICI's have entered routine clinical practice; several ICI combinations show promising efficacy and are in later stages of clinical development with potential practice changing implications for appropriate candidates.
- Similarly, ADCs undergoing prolific expansion in low HER 2(T-Dxd, ARX-788) and TNBC (SG, Dato-DXD, SGN- LIV1a); Ph II/III monotherapy and combination trials are currently underway with potential to change practice soon.

Summary

- Novel checkpoint targets, vaccines, cytokines, oncolytic viruses, ACT and BsABS all emerging in early development- some show promise, however, Its too soon to tell, how this will impact practice.
- Toxicity! IO is certainly not without risks and novel combinations face challenges in terms of safety (on-target/on tumor & on-target/off tumor effects) and scalability in the community (eg: CAR-T and BsABs)
- Biomarkers are key in predicting benefit , identifying populations more likely to benefit and potential mechanisms of resistance. PD-L1 , MSI and TMB are now considered standard practice to determine IO benefit in advanced breast cancer.

Thank you

