Adoptive Cellular Immunotherapy

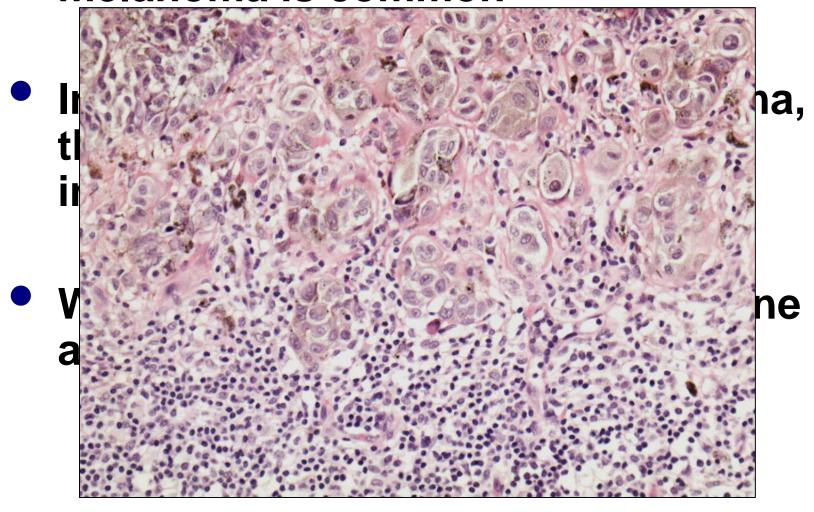
Mark B. Faries, MD, FACS

Professor of Surgery

Chief, Donald L. Morton Melanoma Research Program

Director, Therapeutic Immunology

Cell Therapy: Overview

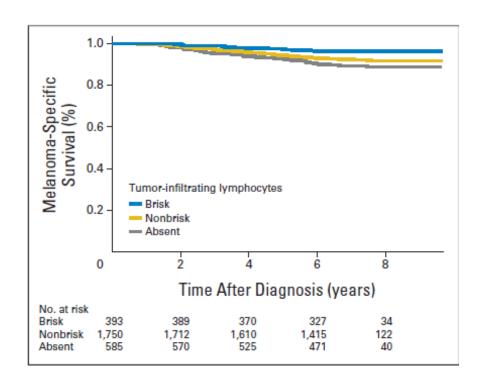

- Background: Lymphocytes and Cancer
- History of ACT
- Current Programs and Recent Discoveries
- Outstanding issues and questions
 - Challenges
 - Opportunities

Tumor-Infiltrating Lymphocytes

- Endogenous immune responses to cancer are described in numerous tumor types and are strongly related to outcomes
- New immune therapies that activate those cells in vivo (e.g. checkpoint blockade) have shown dramatic effects
- Adoptive Cell Transfer has demonstrated proof of concept in melanoma and other cancers

Background

Natural immune recognition of melanoma is common

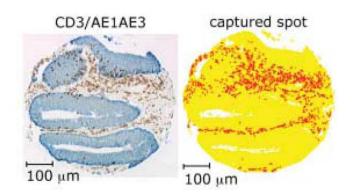

TIL in Melanoma

Tumor-Infiltrating Lymphocyte Grade in Primary Melanomas Is Independently Associated With Melanoma-Specific Survival in the Population-Based Genes, Environment and Melanoma Study

Nancy E. Thomas, Klaus J. Busam, Lynn From, Anne Kricker, Bruce K. Armstrong, Hoda Anton-Culver, Stephen B. Gruber, Richard P. Gallagher, Roberto Zanetti, Stefano Rosso, Terence Dwyer, Alison Venn, Peter A. Kanetsky, Pamela A. Groben, Honglin Hao, Irene Orlow, Anne S. Reiner, Li Luo, Susan Paine, David W. Ollila, Homer Wilcox, Colin B. Begg, and Marianne Berwick

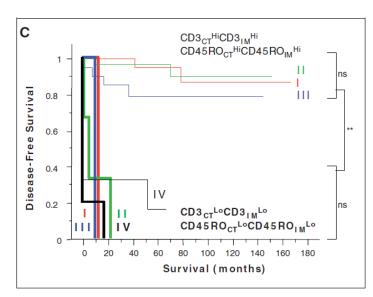
JOURNAL OF CLINICAL ONCOLOGY

NOVEMBER 20 2013



TIL in Colon: Immunoscore

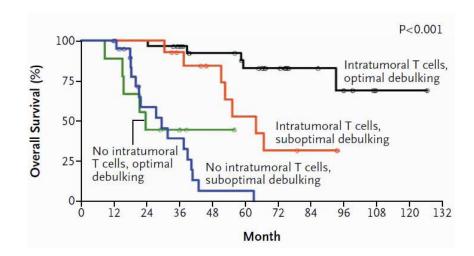
Effector Memory T Cells, Early Metastasis, and Survival in Colorectal Cancer


Franck Pagès, M.D., Ph.D., Anne Berger, M.D., Ph.D., Matthieu Camus, M.Sc., Fatima Sanchez-Cabo, Ph.D., Anne Costes, B.S., Robert Molidor, Ph.D., Bernhard Mlecnik, M.Sc., Amos Kirilovsky, M.Sc., Malin Nilsson, B.S., Diane Damotte, M.D., Ph.D., Tchao Meatchi, M.D., Patrick Bruneval, M.D., Ph.D., Paul-Henri Cugnenc, M.D., Ph.D., Zlatko Trajanoski, Ph.D., Wolf-Herman Fridman, M.D., Ph.D., and Jérôme Galon, Ph.D.

The NEW ENGLAND JOURNAL of MEDICINE DECEMBER 22, 2005

Type, Density, and Location of Immune Cells Within Human Colorectal Tumors Predict Clinical Outcome

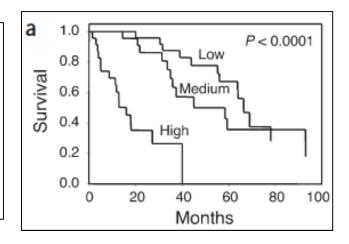
Jérôme Galon *et al. Science* **313**, 1960 (2006);



TIL in Ovarian

Intratumoral T Cells, Recurrence, and Survival in Epithelial Ovarian Cancer

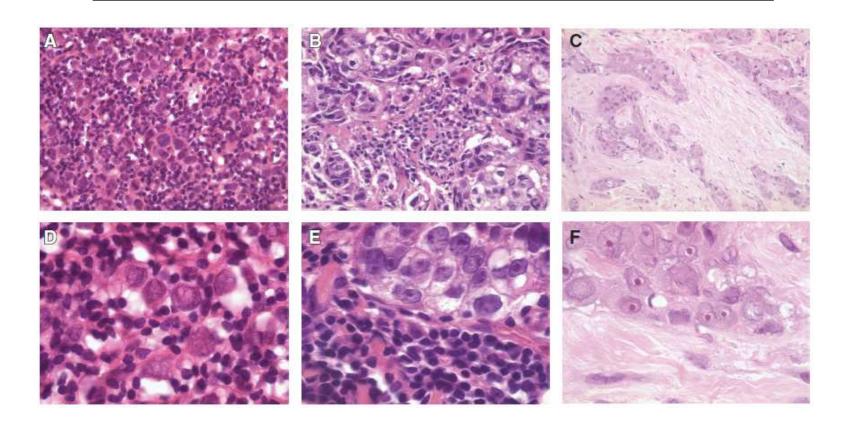
Lin Zhang, M.D., Jose R. Conejo-Garcia, M.D., Ph.D.,
Dionyssios Katsaros, M.D., Ph.D., Phyllis A. Gimotty, Ph.D.,
Marco Massobrio, M.D., Giorgia Regnani, M.D.,
Antonis Makrigiannakis, M.D., Ph.D., Heidi Gray, M.D.,
Katia Schlienger, M.D., Ph.D., Michael N. Liebman, Ph.D.,
Stephen C. Rubin, M.D., and George Coukos, M.D., Ph.D.


JANUARY 16, 2003

Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival

Tyler J Curiel¹, George Coukos², Linhua Zou¹, Xavier Alvarez¹, Pui Cheng¹, Peter Mottram¹, Melina Evdemon-Hogan¹, Jose R Conejo-Garcia², Lin Zhang², Matthew Burow¹, Yun Zhu¹, Shuang Wei¹, Ilona Kryczek¹, Ben Daniel¹, Alan Gordon³, Leann Myers¹, Andrew Lackner¹, Mary L Disis⁴, Keith L Knutson⁴, Lieping Chen⁵ & Weiping Zou¹

VOLUME 10 | NUMBER 9 | SEPTEMBER 2004 NATURE MEDICINE

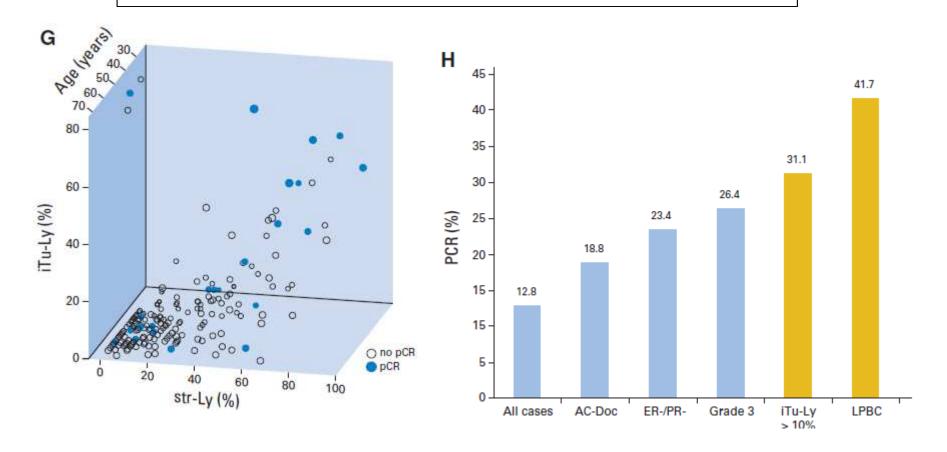


TIL in Breast Cancer

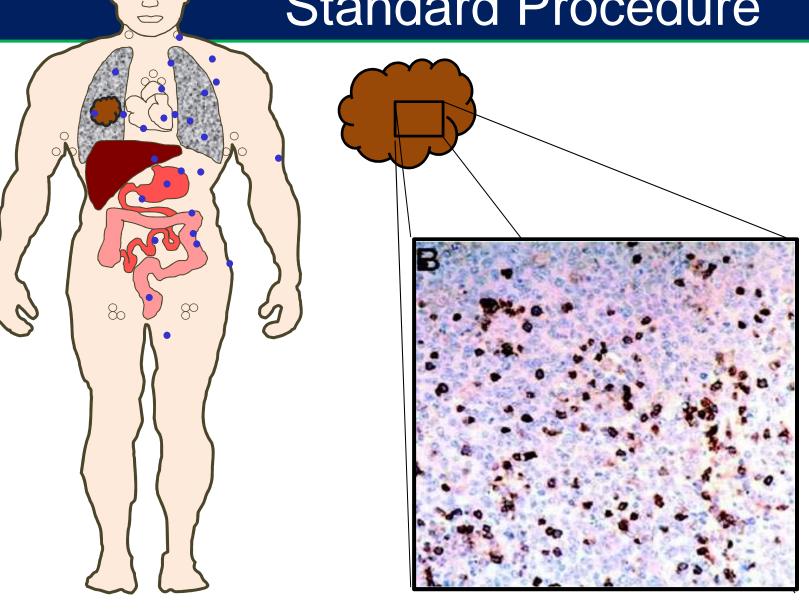
Tumor-Associated Lymphocytes As an Independent Predictor of Response to Neoadjuvant Chemotherapy in Breast Cancer

Carsten Denkert, Sibylle Loibl, Aurelia Noske, Marc Roller, Berit Maria Müller, Martina Komor, Jan Budczies, Silvia Darb-Esfahani, Ralf Kronenwett, Claus Hanusch, Christian von Törne, Wilko Weichert, Knut Engels, Christine Solbach, Iris Schrader, Manfred Dietel, and Gunter von Minckwitz

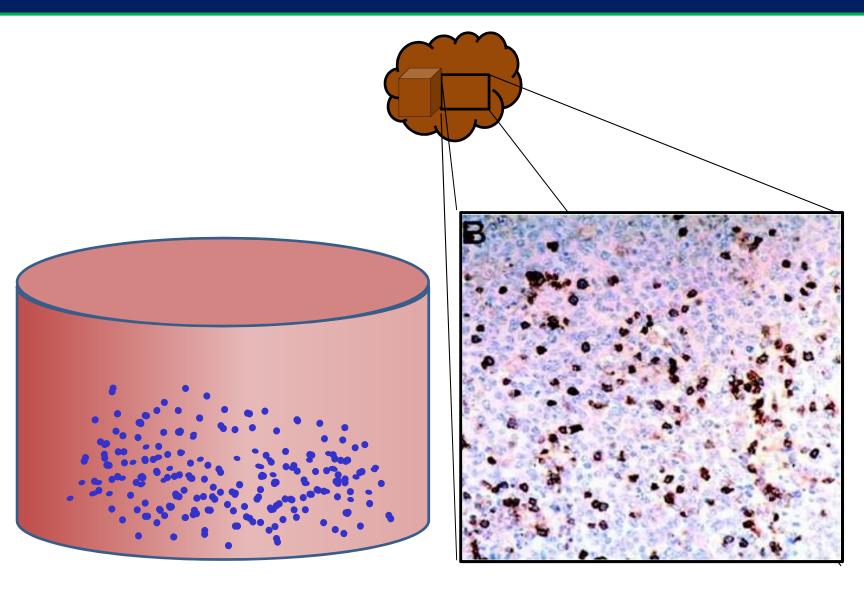
JANUARY 1 2010 J Clin Oncol 28:105-113.

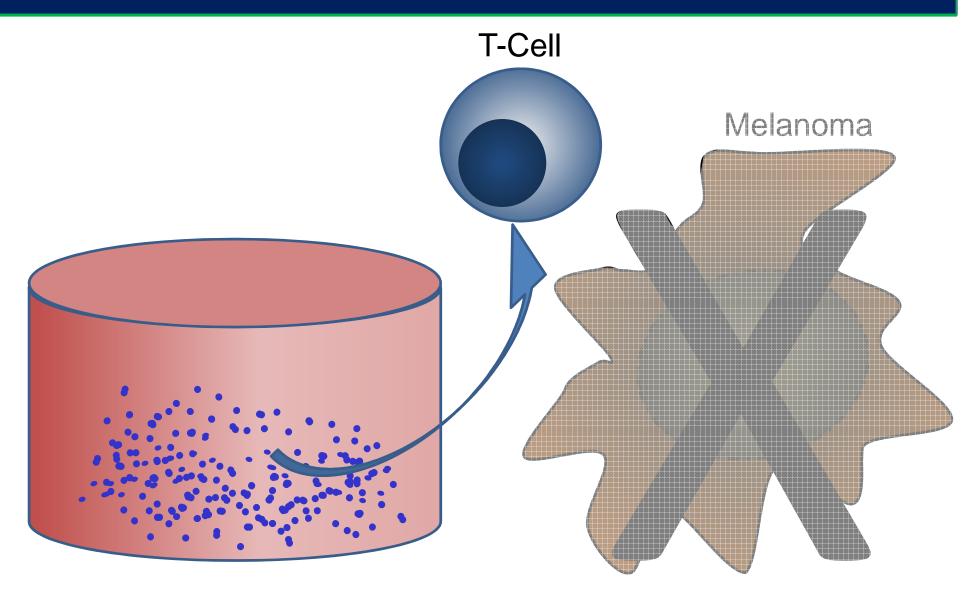


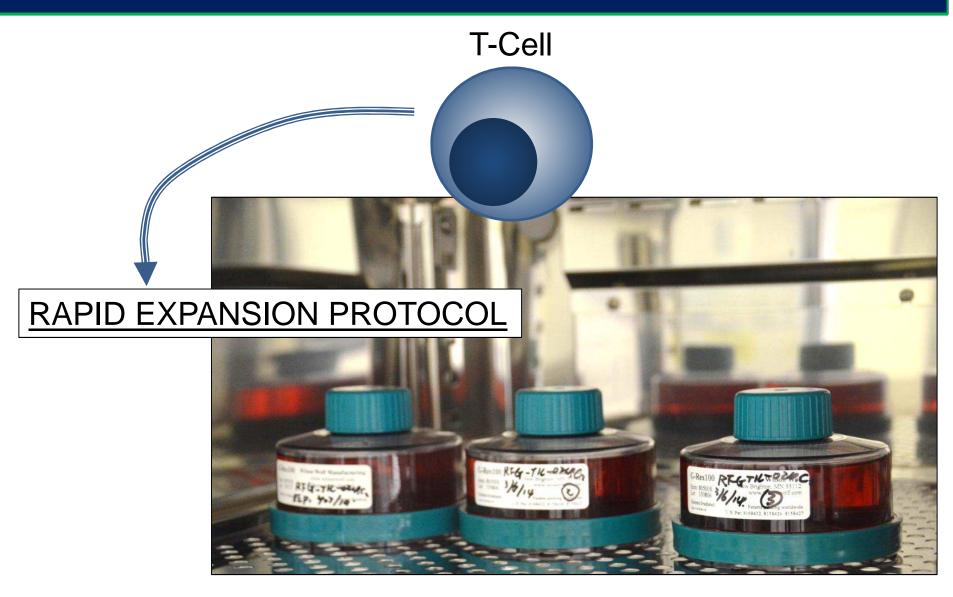
TIL in Breast Cancer

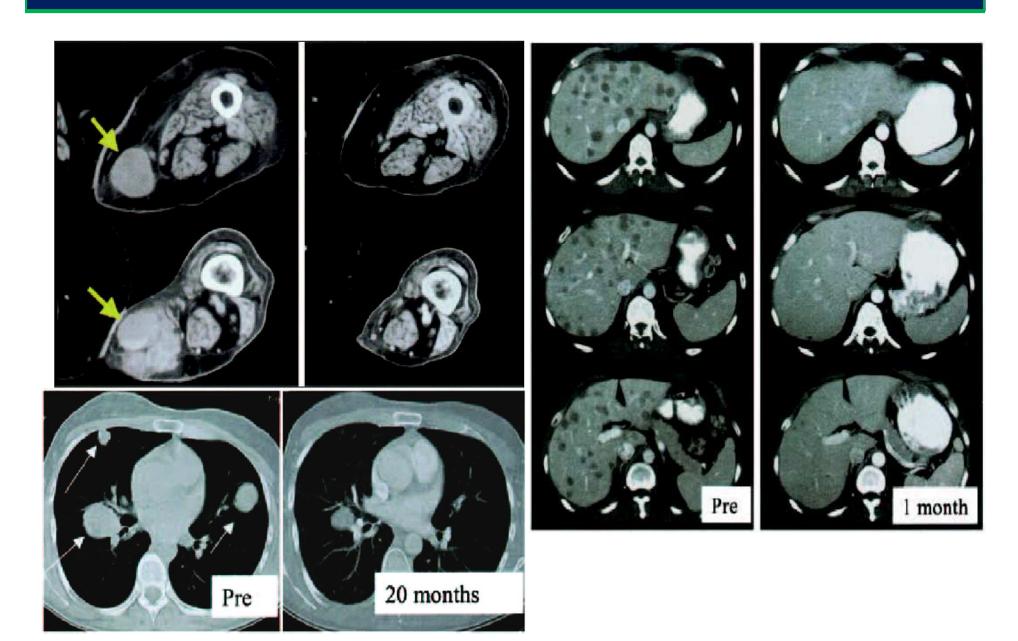

Tumor-Associated Lymphocytes As an Independent Predictor of Response to Neoadjuvant Chemotherapy in Breast Cancer

Carsten Denkert, Sibylle Loibl, Aurelia Noske, Marc Roller, Berit Maria Müller, Martina Komor, Jan Budczies, Silvia Darb-Esfahani, Ralf Kronenwett, Claus Hanusch, Christian von Törne, Wilko Weichert, Knut Engels, Christine Solbach, Iris Schrader, Manfred Dietel, and Gunter von Minckwitz


JANUARY 1 2010 J Clin Oncol 28:105-113.




TIL: Current Standard Procedure


TIL: Current Standard Procedure

TIL: Current Standard Procedure

TIL: Clinical Responses

TIL: Early Clinical Data

Treatment of Patients With Metastatic Melanoma With Autologous Tumor-Infiltrating Lymphocytes and Interleukin 2

Journal of the National Cancer Institute, , Vol. 86, No. 15, August 3, 1994 Steven A. Rosenberg, John R. Yannelli, James C. Yang, Suzanne L. Topalian, Douglas J. Schwartzentruber, Jeffrey S. Weber, David R. Parkinson, Claudia A. Seipp, Jan H. Einhorn, Donald E. White*

Table 2. Number of patients responding to treatment with TILs plus IL-2 and duration of response*

	Response to treatment											
		hamide		Plus cyc	lophospl	hamide			Total			
	No. of patients			No. of patie		nts		No. of patien		ıts		
	Total	CR	PR	% CR + PR	Total	Total CR		% CR + PR	Total	CR	PR	% CR + PR
Prior IL-2		1	2	27	17	0	6	35	28	1	8	32
No prior IL-2	18	3	3	33	40	}	13	35	58	4	16	34
Total	29	4	5	31	57	1	19	35	86	5	24	34
					D	uration o	f respon	se, mo				
				No cyclophos	sphamide			Plus cyclop	hosphamide	;		
				CR	PR	_	(CR	PR			
Prior IL-2				23	4, 1			_	8, 7, 6, 5,	5, 1		
No prior IL-2				46+, 38, 21+	7, 4,	2		20	53+, 9, 7,	7, 4, 4		

^{*}CR = complete response. PR = partial response.

TIL: Early Clinical Data

Treatment of Patients With Metastatic Melanoma With Autologous Tumor-Infiltrating Lymphocytes and Interleukin 2

Steven A. Rosenberg, John R. Yannelli, James C. Yang, Suzanne L. Topalian, Douglas J. Schwartzentruber, Jeffrey S. Weber, David R. Parkinson, Claudia A. Seipp, Jan H. Einhorn, Donald E. White*

Journal of the National Cancer Institute, , Vol. 86, No. 15, August 3, 1994

Table 3. Treatment with TILs plus IL-2: characteristics of TILs associated with response and site of tumor harvest

Characteristics of TILs associated with response	Responder*	P	
Time in culture, d	33 ± 1	43 ± 2	.0001
Doubling time, d	2.4 ± 0.2	3.5 ± 0.4	.03
% lysis (effector-to-target cell ratio of 40:1) Autologous tumor target Daudi lymphoma target	25 ± 4 11 ± 6	10 ± 2 6 ± 2	.0008 .6
Phenotype, % of cells CD3 ⁺ CD4 ⁺ CD8 ⁺ CD56 ⁺	96±1 24±8 71±8 9±3	95±1 32±5 62±5 13±2	.9 .3 .3

No	of	nat	ients
110.	v.	Pu	rem.

Site of tumor harvest	Responder	Nonresponder
Lymph node†	6	29
Subcutaneous tumor nodule†	18	19
Muscle	0	3
Lung	1	2
Intraperitoneal mass	0	2
Pleural effusion	0	1
Colon	1	0
Liver	1	0
Spleen	0	1
Ovary	1	0
Bone	1	0
Total	29	57

^{*}Values = means ± SEM.

[†]Difference in response rates comparing lymph node and subcutaneous harvest sites, P = .006.

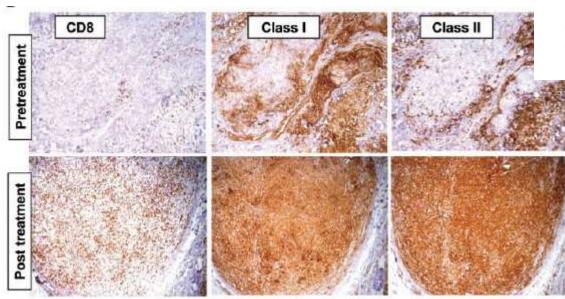
TIL: Early Clinical Data

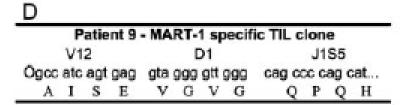
Cancer Regression and Autoimmunity in Patients After Clonal Repopulation with Antitumor Lymphocytes

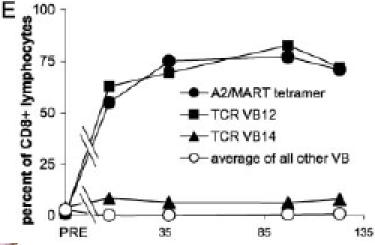
Mark E. Dudley, John R. Wunderlich, Paul F. Robbins, James C. Yang, Patrick Hwu, Douglas J. Schwartzentruber, Suzanne L. Topalian, Richard Sherry, Nicholas P. Restifo, Amy M. Hubicki, Michael R. Robinson, Mark Raffeld, Paul Duray, Claudia A. Seipp, Linda Rogers-Freezer, Kathleen E. Morton, Sharon A. Mavroukakis, Donald E. White, Steven A. Rosenberg 1*

25 OCTOBER 2002 VOL 298 SCIENCE

Table 1. Patient demographics, treatments received, and clinical outcomes.


			Treatn	nent*				
Patient Age/sex	Cells infused† (×10 ⁻¹⁰)	CD8/CD4 phenotype‡ (%)	Antigen specificity§	IL-2 (doses)	Sites of evaluable metastases	Response duration (months)	Autoimmunity	
1 18/M		2.3	11/39	Other	9	Lymph nodes (axillary, mesenteric, pelvic)	PR¶ (24+)	None
2	30/F	3.5	83/15	MART-1, gp100	8	Cutaneous, subcutaneous	PR (8)	Vitiligo
3	43/F	4.0	44/58	gp100	5	Brain, cutaneous, liver, lung	NR	None
4	57/F	3.4	56/52	gp100	9	Cutaneous, subcutaneous	PR (2)	None
5	53/M	3.0	16/85	Other	7	Brain, lung, lymph nodes	NR-mixed	None
6	37/F	9.2	65/35	Other	6	Lung, intraperitoneal, subcutaneous	PR (15+)	None
7	44/M	12.3	61/41	MART-1	7	Lymph nodes, subcutaneous	NK-mixed	Vitiligo
8	48/M	9.5	48/52	gp100	12	Subcutaneous	NR	None
9	57/M	9.6	84/13	MART-1	10	Cutaneous, subcutaneous	PR (10+)	Vitiligo
10	55/M	10.7	96/2	MART-1	12	Lymph nodes, cutaneous, subcutaneous	PR¶ (9+)	Uveitis
11	29/M	13.0	96/3	MART-1	12	Liver, pericardial, subcutaneous	NR-mixed	Vitiligo
12	37/F	13.7	72/24	MART-1	11	Liver, lung, gallbladder, lymph nodes	NR-mixed	None
13	41/F	7.7	92/8	MART-1	11	Subcutaneous	NR	None

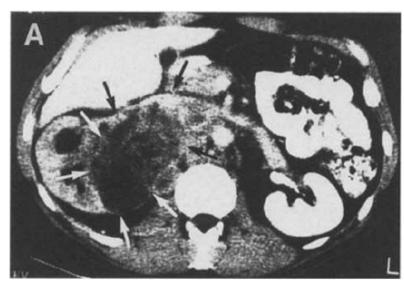

TIL Clinical Effects

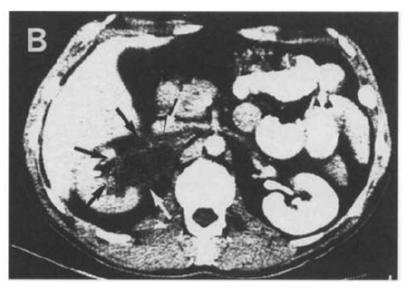

Cancer Regression and Autoimmunity in Patients After Clonal Repopulation with Antitumor Lymphocytes Mark E. Dudley, John R. Wunderlich, Paul F. Robbins, 1

Mark E. Dudley, John R. Wunderlich, Paul F. Robbins, James C. Yang, Patrick Hwu, Douglas J. Schwartzentruber, Suzanne L. Topalian, Richard Sherry, Nicholas P. Restifo, Amy M. Hubicki, Michael R. Robinson, Mark Raffeld, Paul Duray, Claudia A. Seipp, Linda Rogers-Freezer, Kathleen E. Morton, Sharon A. Mavroukakis, Donald E. White, Steven A. Rosenberg

25 OCTOBER 2002 VOL 298 SCIENCE

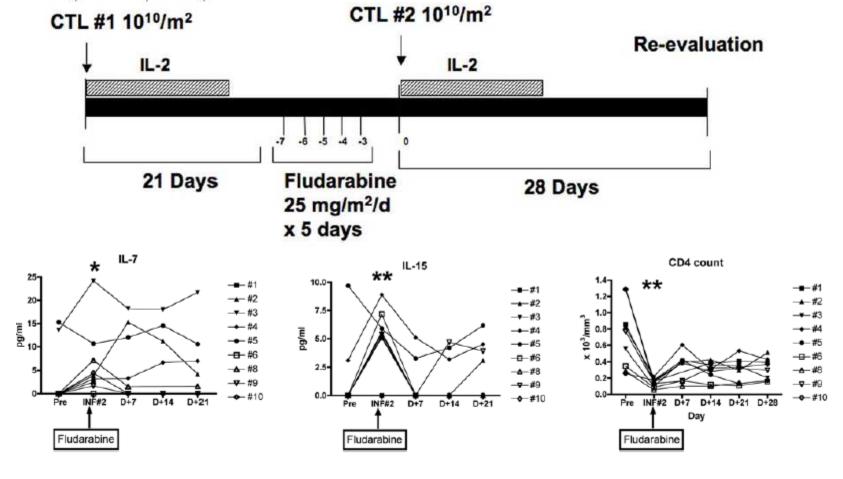
TIL: Early Clinical Data RCC

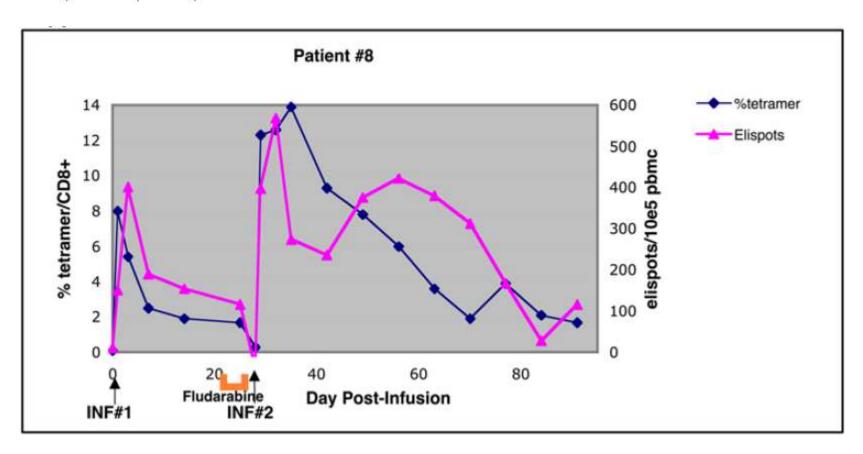

Adoptive Immunotherapy With Tumor-Infiltrating Lymphocytes and Interleukin-2 in Patients With Metastatic Malignant Melanoma and Renal Cell Carcinoma: A Pilot Study


By Peter S. Goedegebuure, Linda M. Douville, Hong Li, Glenn C. Richmond, Deric D. Schoof, Marybeth Scavone, and Timothy J. Eberlein

Journal of Clinical Oncology, Vol 13, No 8 (August), 1995: pp 1939-1949

Table 4. Clinical Responses to TIL and Low-Dose IL-2


	Melanoma		RCC		To	otal
Response	No.	%	No.	%	No.	%
CR	3	19	0	0	4	20
MR	0	0	2	50	2	10
NR	9	56*	2	50	10	50
PD	4	25	0	0	4	20
Assessable	16	80	4	20	20	100


Fludarabine Modulates Immune Response and Extends In Vivo Survival of Adoptively Transferred CD8 T Cells in Patients with Metastatic Melanoma

Herschel Wallen*, John A. Thompson, J. Zachary Reilly, Rebecca M. Rodmyre, Jianhong Cao, Cassian Yee March 2009 | Volume 4 | Issue 3 | e4749

Fludarabine Modulates Immune Response and Extends In Vivo Survival of Adoptively Transferred CD8 T Cells in Patients with Metastatic Melanoma

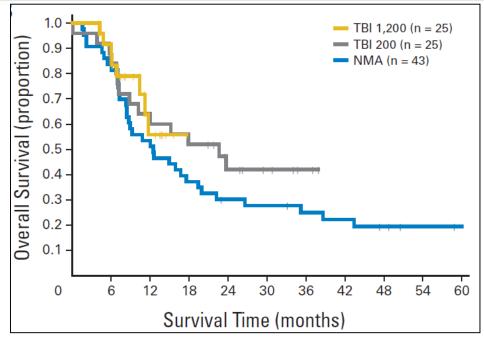
Herschel Wallen*, John A. Thompson, J. Zachary Reilly, Rebecca M. Rodmyre, Jianhong Cao, Cassian Yee March 2009 | Volume 4 | Issue 3 | e4749

Adoptive Cell Therapy for Patients With Metastatic Melanoma: Evaluation of Intensive Myeloablative Chemoradiation Preparative Regimens

Mark E. Dudley, James C. Yang, Richard Sherry, Marybeth S. Hughes, Richard Royal, Udai Kammula, Paul F. Robbins, JianPing Huang, Deborah E. Citrin, Susan F. Leitman, John Wunderlich, Nicholas P. Restifo, Armen Thomasian, Stephanie G. Downey, Franz O. Smith, Jacob Klapper, Kathleen Morton, Carolyn Laurencot, Donald E. White, and Steven A. Rosenberg

JOURNAL OF CLINICAL ONCOLOGY

VOLUME 26 · NUMBER 32 · NOVEMBER 10 2008

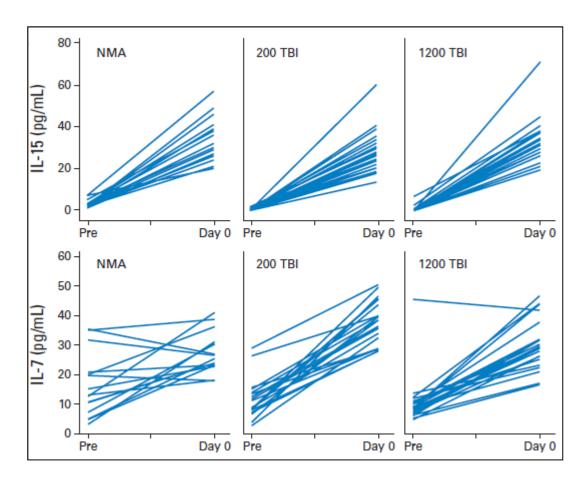

Day of treatment	-7	-6	-5	-4	-3	-2	-1	0	1	2	3
Non-myeloablative	Су	Су	Flu	Flu	Flu	Flu	Flu	TIL	IL-2	IL-2	IL-2
Ablative (200cGy)		Cy Flu	Cy Flu	Flu	Flu	Flu	ТВІ	TIL	IL-2	IL-2 CD34⊣	IL-2
Ablative (1,200cGy)	Cy Flu	Cy Flu	Flu	Flu	Flu TBI	ТВІ	ТВІ	TIL	IL-2 CD34-	IL-2	IL-2

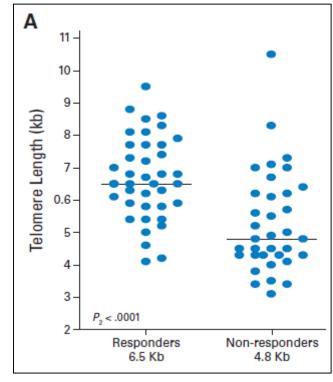
Adoptive Cell Therapy for Patients With Metastatic Melanoma: Evaluation of Intensive Myeloablative Chemoradiation Preparative Regimens

JOURNAL OF CLINICAL ONCOLOGY

VOLUME 26 · NUMBER 32 · NOVEMBER 10 2008

TBI	Total No. of	-		PR	-	CR		(OR
	Patients	No.	%	Duration (months)	No.	%	Duration (months)	No.	%
None*	43	17	39.5	64+, 32+, 20+, 29, 28, 14, 13, 11, 8, 8, 7, 4, 3, 3, 2, 2, 2	4	9.3	63+, 58+, 48+, 47+	21	48.8
2 Gy	25	11	44.0	33+, 29+, 23+, 14, 10, 6, 5, 5, 4, 3, 3	2	8.0	37+, 25+	13	52.0
12 Gy	25	14	56.0	14+, 13+, 10+, 7+, 7+, 7+, 6+, 6+, 4+, 7, 6, 6, 4, 3	4	16.0	17+, 15+, 13+, 8+	18	72.0

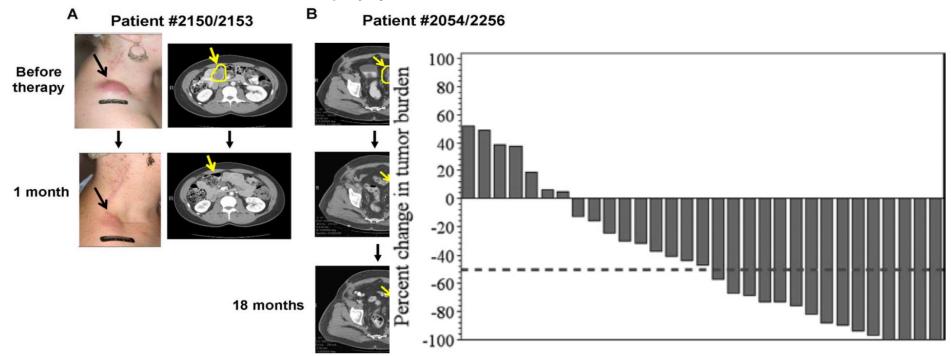



Adoptive Cell Therapy for Patients With Metastatic Melanoma: Evaluation of Intensive Myeloablative Chemoradiation Preparative Regimens

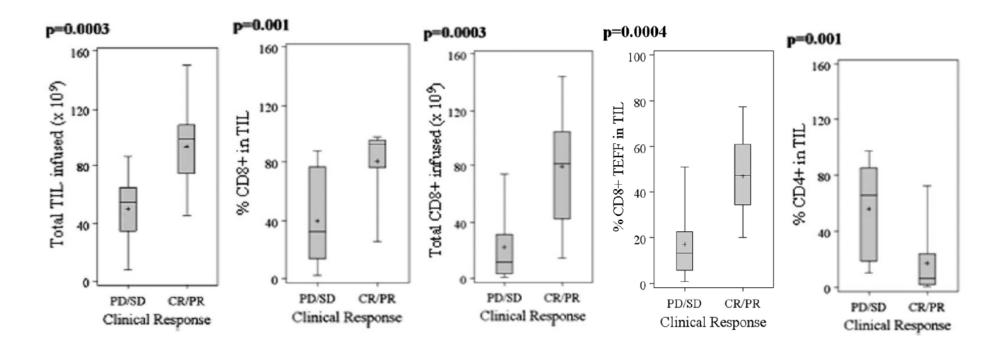
Mark E. Dudley, James C. Yang, Richard Sherry, Marybeth S. Hughes, Richard Royal, Udai Kammula, Paul F. Robbins, JianPing Huang, Deborah E. Citrin, Susan F. Leitman, John Wunderlich, Nicholas P. Restifo, Armen Thomasian, Stephanie G. Downey, Franz O. Smith, Jacob Klapper, Kathleen Morton, Carolyn Laurencot, Donald E. White, and Steven A. Rosenberg

JOURNAL OF CLINICAL ONCOLOGY

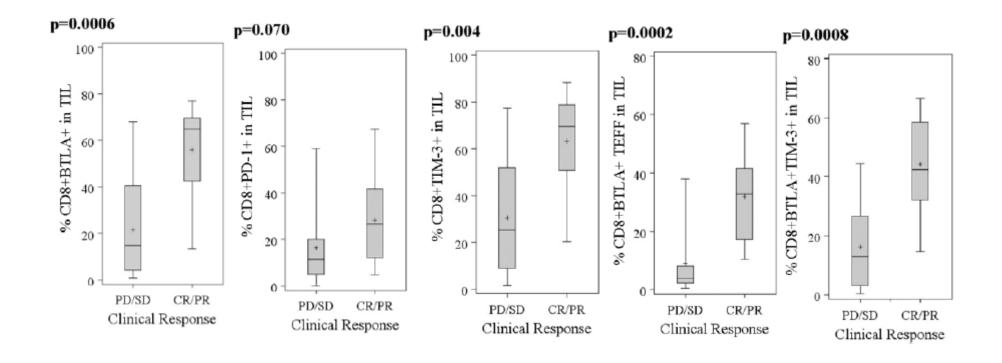
VOLUME 26 · NUMBER 32 · NOVEMBER 10 2008



Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients

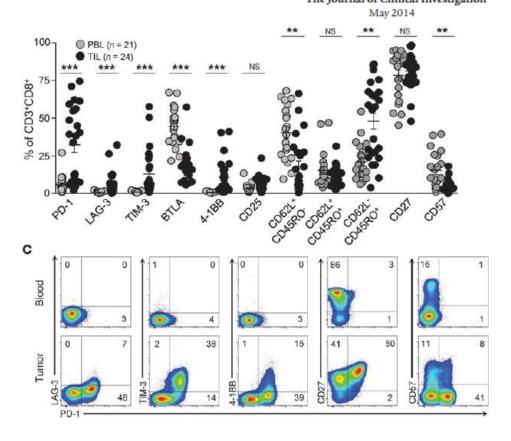

Laszlo G. Radvanyi^{1,*}, Chantale Bernatchez¹, Minying Zhang¹, Patricia S. Fox², Priscilla Miller¹, Jessica Chacon¹, Richard Wu¹, Gregory Lizee¹, Sandy Mahoney¹, Gladys Alvarado¹, Michelle Glass¹, Valen E. Johnson², John D. McMannis³, Elizabeth Shpall³, Victor Prieto⁴, Nicholas Papadopoulos¹, Kevin Kim¹, Jade Homsi¹, Agop Bedikian¹, Wen-Jen Hwu¹, Sapna Patel¹, Merrick I. Ross⁵, Jeffrey E. Lee⁵, Jeffrey E. Gershenwald⁵, Anthony Lucci⁵, Richard Royal⁵, Janice N. Cormier⁵, Michael A. Davies¹, Rahmatu Mansaray^{1,3}, Orenthial J. Fulbright^{1,3}, Christopher Toth^{1,3}, Renjith Ramachandran^{1,3}, Seth Wardell^{1,3}, Audrey Gonzalez^{1,3}, and Patrick Hwu^{1,*}

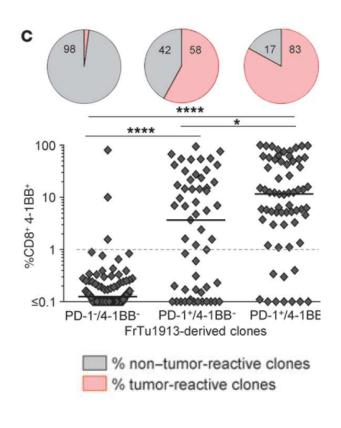
Clin Cancer Res. 2012 December 15; 18(24): 6758-6770.


Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients

Clin Cancer Res. 2012 December 15; 18(24): 6758-6770.

Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients


Clin Cancer Res. 2012 December 15; 18(24): 6758-6770.



PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors

Alena Gros,¹ Paul F. Robbins,¹ Xin Yao,¹ Yong F. Li,¹ Simon Turcotte,¹ Eric Tran,¹ John R. Wunderlich,¹ Arnold Mixon,¹ Shawn Farid,¹ Mark E. Dudley,¹ Ken-ichi Hanada,¹ Jorge R. Almeida,² Sam Darko,² Daniel C. Douek,² James C. Yang,¹ and Steven A. Rosenberg¹

The Journal of Clinical Investigation

Tumor-Infiltrating Lymphocytes: Challenges

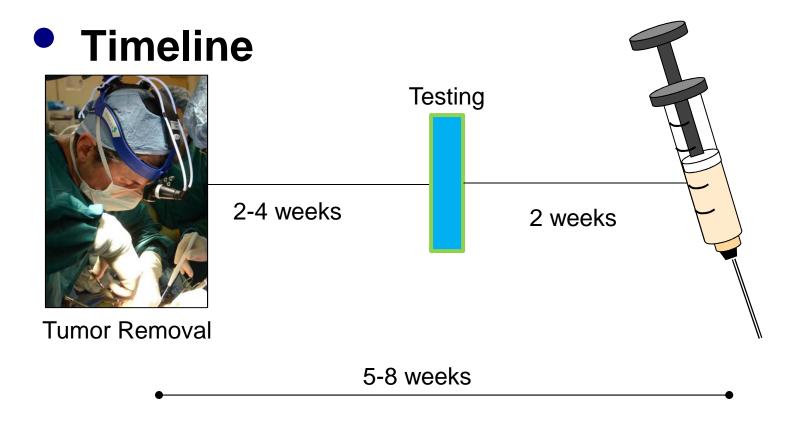
- Technical challenges: ("GMP")
- Timeline
- Tumor reactivity
- Interleukin-2

Tumor-Infiltrating Challer

Technical challenge

Cell Production Facility

Cell Production Facility

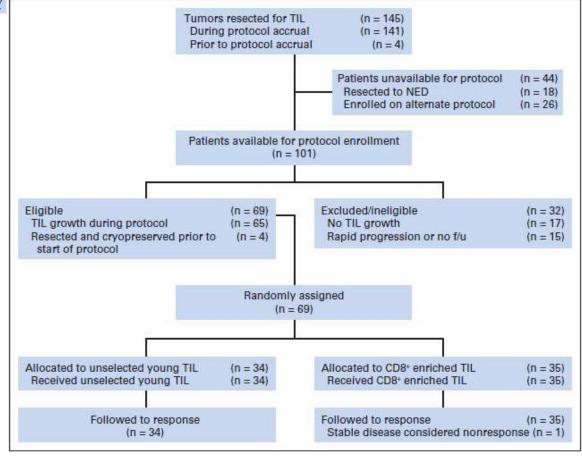


Tumor-Infiltrating Lymphocytes: Challenges

- Technical challenges: ("GMP")
- Timeline
- Tumor reactivity
- Interleukin-2

Tumor-Infiltrating Lymphocytes: Challenges

Technical challenges: ("GMP")



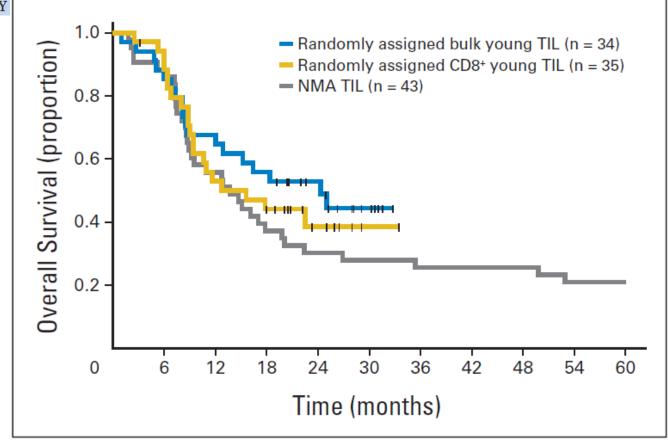
Young TIL

Randomized Selection Design Trial Evaluating CD8⁺-Enriched Versus Unselected Tumor-Infiltrating Lymphocytes for Adoptive Cell Therapy for Patients With Melanoma JUNE 10 2013

Mark E. Dudley, Colin A. Gross, Robert P.T. Somerville, Young Hong, Nicholas P. Schaub, Shannon F. Rosati, Donald E. White, Debbie Nathan, Nicholas P. Restifo, Seth M. Steinberg, John R. Wunderlich, Udai S. Kammula, Richard M. Sherry, James C. Yang, Giao Q. Phan, Marybeth S. Hughes, Carolyn M. Laurencot, and Steven A. Rosenberg

JOURNAL OF CLINICAL ONCOLOGY

Young TIL

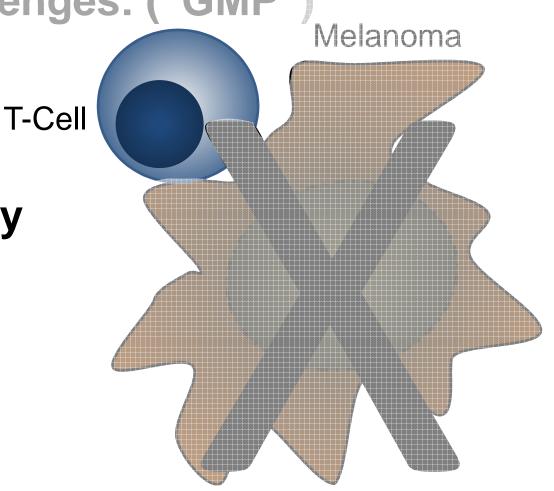

Randomized Selection Design Trial Evaluating
CD8⁺-Enriched Versus Unselected Tumor-Infiltrating
Lymphocytes for Adoptive Cell Therapy for Patients

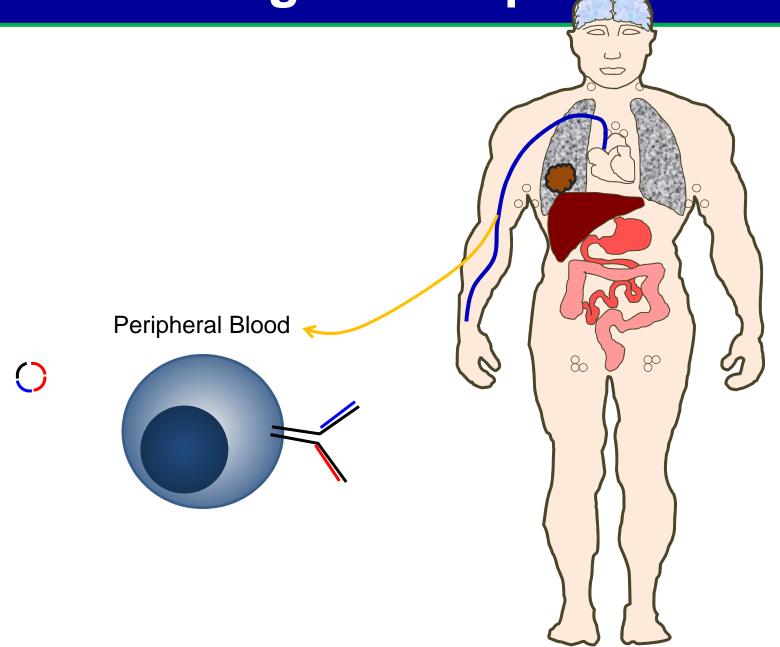
JUNE 10 2013

With Melanoma

Mark E. Dudley, Colin A. Gross, Robert P.T. Somerville, Young Hong, Nicholas P. Schaub, Shannon F. Rosati, Donald E. White, Debbie Nathan, Nicholas P. Restifo, Seth M. Steinberg, John R. Wunderlich, Udai S. Kammula, Richard M. Sherry, James C. Yang, Giao Q. Phan, Marybeth S. Hughes, Carolyn M. Laurencot, and Steven A. Rosenberg

JOURNAL OF CLINICAL ONCOLOGY

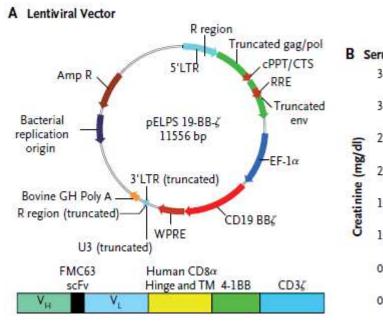

Tumor-Infiltrating Lymphocytes: Challenges

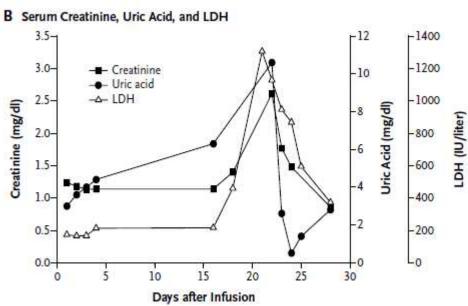

Technical challenges: ("GMP")

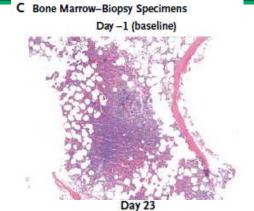
Timeline

Tumor reactivity

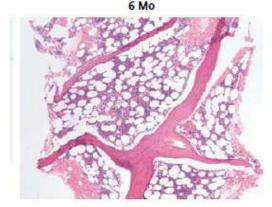
Interleukin-2

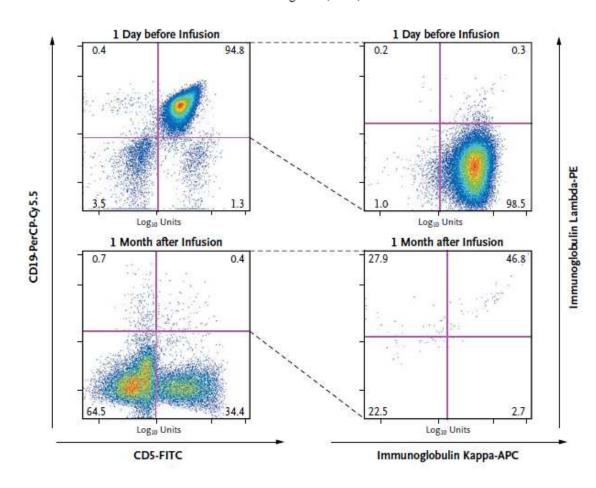





Chimeric Antigen Receptor-Modified T Cells in Chronic Lymphoid Leukemia David L. Porter, M.D., Bruce L. Levine, Ph.D., Michael Kalos, Ph.D.,

David L. Porter, M.D., Bruce L. Levine, Ph.D., Michael Kalos, Ph.D., Adam Bagg, M.D., and Carl H. June, M.D.


The NEW ENGLAND JOURNAL of MEDICINE
August 10, 2011,

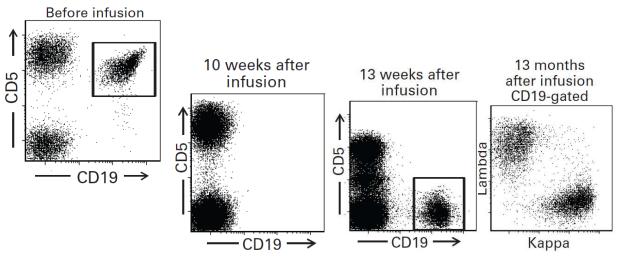


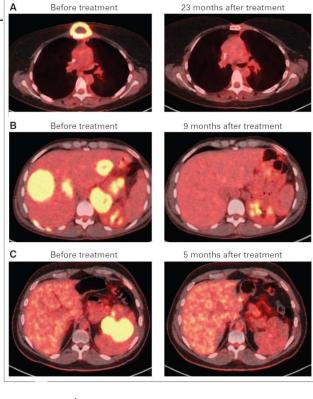
Chimeric Antigen Receptor–Modified T Cells in Chronic Lymphoid Leukemia

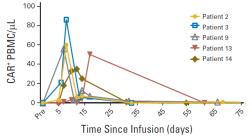
The NEW ENGLAND JOURNAL of MEDICINE
August 10, 2011,

Chemotherapy-Refractory Diffuse Large B-Cell Lymphoma and Indolent B-Cell Malignancies Can Be Effectively Treated With Autologous T Cells Expressing an Anti-CD19 Chimeric Antigen Receptor

James N. Kochenderfer, Mark E. Dudley, Sadik H. Kassim, Robert P.T. Somerville, Robert O. Carpenter, Maryalice Stetler-Stevenson, James C. Yang, Giao Q. Phan, Marybeth S. Hughes, Richard M. Sherry, Mark Raffeld, Steven Feldman, Lily Lu, Yong F. Li, Lien T. Ngo, Andre Goy, Tatyana Feldman, David E. Spaner, Michael L. Wang, Clara C. Chen, Sarah M. Kranick, Avindra Nath, Debbie-Ann N. Nathan, Kathleen E. Morton, Mary Ann Toomey, and Steven A. Rosenberg


JOURNAL OF CLINICAL ONCOLOGY Published Ahead of Print on August 25, 2014




Chemotherapy-Refractory Diffuse Large B-Cell Lymphoma and Indolent B-Cell Malignancies Can Be Effectively Treated With Autologous T Cells Expressing an Anti-CD19

Chimeric Antigen Receptor

- 15 patients (9 DLBCL, 6 indolent B-cell malig.)
- 1 Death and several neurologic toxicities
- 4/7 DLBCL with CR, 2 PR, 1 SD
- Overall RR: 12/13 (92%) (9 responses ongoing)

Tumor-Infiltrating Lymphocytes: Modifications

5/9/2014

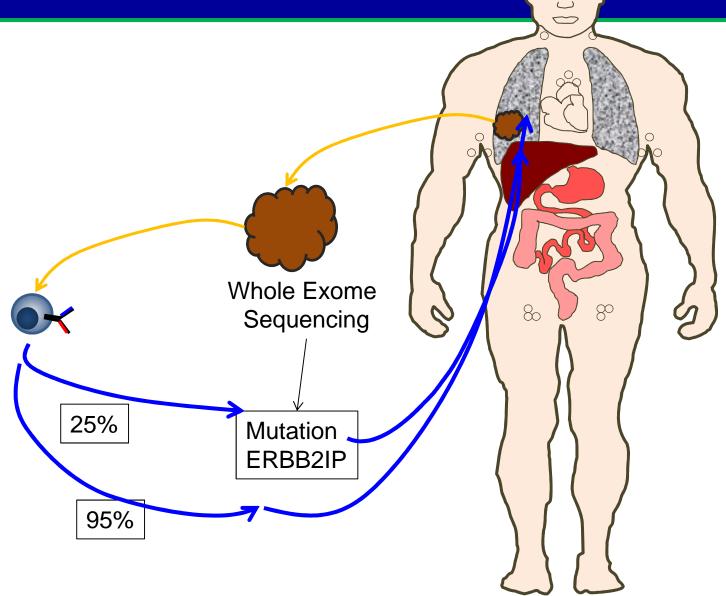
Patient's Cells Deployed to Attack Aggressive Cancer - NYTimes.com

HEALTH | NYT NOW

Patient's Cells Deployed to Attack Aggressive Cancer

By DENISE GRADY MAY 8, 2014

Doctors have taken an important step toward a long-sought goal: harnessing a person's own immune system to fight cancer.


An article published Thursday in the journal Science describes the treatment of a 43-year-old woman with an advanced and deadly type of cancer that had spread from her bile duct to her liver and lungs, despite chemotherapy.

Researchers at the National Cancer Institute sequenced the genome of her cancer and identified cells from her immune system that attacked a specific mutation in the malignant cells. Then they grew those immune cells in the laboratory and infused billions of them back into her bloodstream.

The tumors began "melting away," said Dr. Steven A. Rosenberg, the senior author of the article and chief of the surgery branch at the cancer institute.

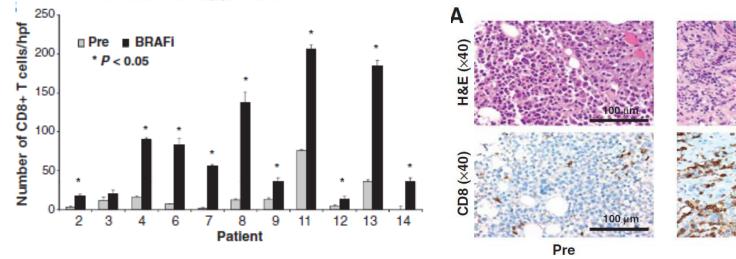
The woman is not cured: Her tumors are shrinking, but not gone. And an experiment on one patient cannot determine whether a new treatment works. But the report is noteworthy because it describes an approach that

Tumor-Infiltrating Lymphocytes: Modifications

TIL Opportunities: Combination

- TIL Induction
 - BRAFi
 - XRT
 - Vaccination

BRAF Inhibition Is Associated with Enhanced Melanoma Antigen Expression and a More Favorable Tumor


Microenvironment in Patients with Metastatic Melanoma

Dennie T. Frederick¹, Adriano Piris³, Alexandria P. Cogdill¹, Zachary A. Cooper¹, Cecilia Lezcano⁶, Cristina R. Ferrone¹, Devarati Mitra⁴, Andrea Boni¹, Lindsay P. Newton¹, Chengwen Liu⁷, Weiyi Peng⁷, Ryan J. Sullivan², Donald P. Lawrence², F. Stephen Hodi⁵, Willem W. Overwijk⁷, Gregory Lizée⁷, George F. Murphy⁶, Patrick Hwu⁷, Keith T. Flaherty², David E. Fisher⁴, and Jennifer A. Wargo¹

Clin Cancer Res; 19(5); 1225-31.

January 10, 2013;

BRAFi

