

Immunotherapy for the Treatment of Skin Cancers

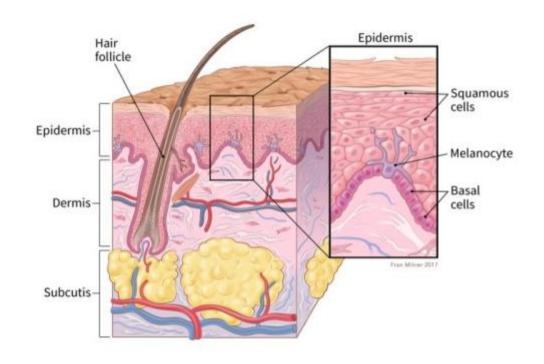
Evan Hall, MD MPhil

Assistant Professor, University of Washington

Assistant Member, Fred Hutchinson Cancer Research Center

Disclosures

- Consulting Fees: Cancer Support Community
- I will be discussing non-FDA approved indications during my presentation.



Background

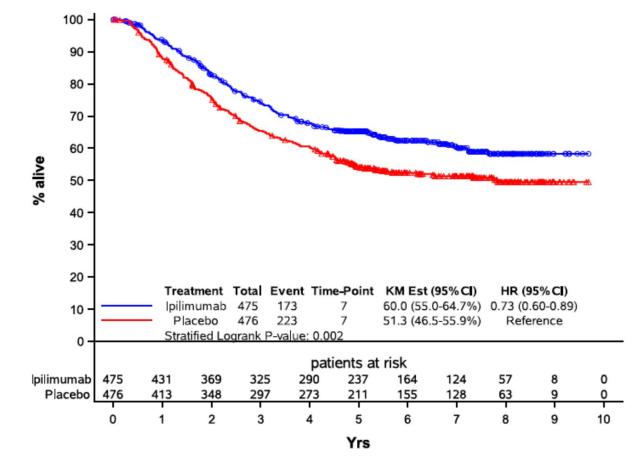
- Skin cancer is the most common type of cancer
- Three most common types of skin cancers:
 - Basal cell carcinoma (5.4 million cases in USA in 2020)
 - Squamous cell carcinoma (3.3 million cases in 2020)
 - Melanoma (~100,000 cases in USA in 2020)
- Melanoma was one of the foundational disease states for testing immunotherapies

Approved cytokines in melanoma

Drug	Approved	Indication	Dose
High-dose interferon alfa-2b	1995	Adjuvant – high risk for systemic recurrence	Induction: 20m IU/m ² IV 5x/wk for 4 wks Maintenance: 10m IU/m ² s.c. 3x/wk for 48 wks
Interleukin-2 (Aldesleukin)	1998	Stage IV	600k IU/kg/dose Q8hr, up to 14 doses; 9 days of rest; can repeat up to 28 doses per course
Pegylated Interferon alfa-2b (Sylatron)	2011	Adjuvant – microscopic or gross nodal involvement	6 mcg/kg/wk s.c. for 8 doses, then 3 mcg/kg/wk s.c. for up to 5 years

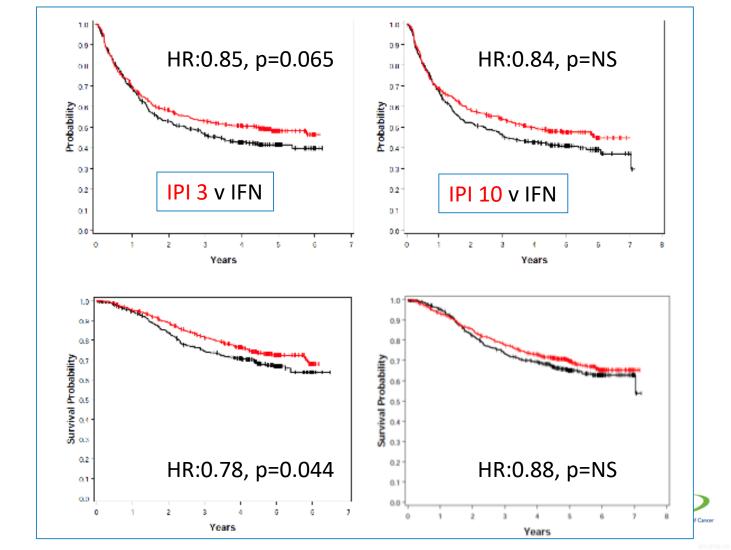
Approved checkpoint inhibitors in melanoma

Drug	Approved	Indication	Dose
Ipilimumab	2011	Unresectable/Metastatic melanoma: newly diagnosed or after progression	3 mg/kg Q3W for 4 doses
	2015	Adjuvant therapy in stage III melanoma after complete resection	10 mg/kg Q3W for 4 doses, then 10 mg/kg Q12W for 3 years
	2017	Unresectable/Metastatic melanoma: newly diagnosed or after progression, all patients ≥ 12 yr	3 mg/kg Q3W for 4 doses



Adjuvant Ipilimumab in High-Risk Stage III Melanoma

- EORTC 18071 phase III trial
 - NCT00636168
 - Adjuvant ipilimumab vs placebo
 - Ipilimumab 10mg/kg Q3W for four doses, then every 12 weeks for up to 3 years



Adjuvant Ipilimumab in High-Risk Stage III Melanoma

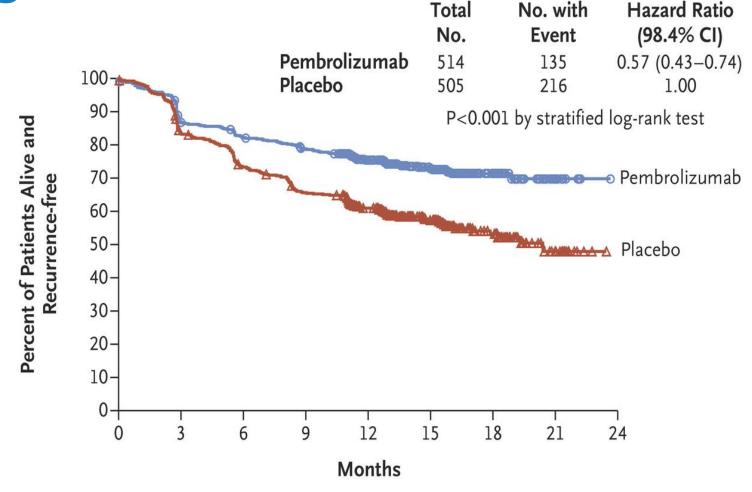
- ECOG 1609
 - NCT01274338
 - Adjuvant interferon (IFN) vs ipilimumab 3 mg/kg (IPI 3) vs ipilimumab 10 mg/kg (IPI 10)
 - Ipilimumab Q3W for four doses, then every 12 weeks for up to 3 years
 - IPI 3 "better than IFN"
 - IPI 10 "not better than IFN"
 - IPI 3 better tolerated than IPI 10

RFS

OS

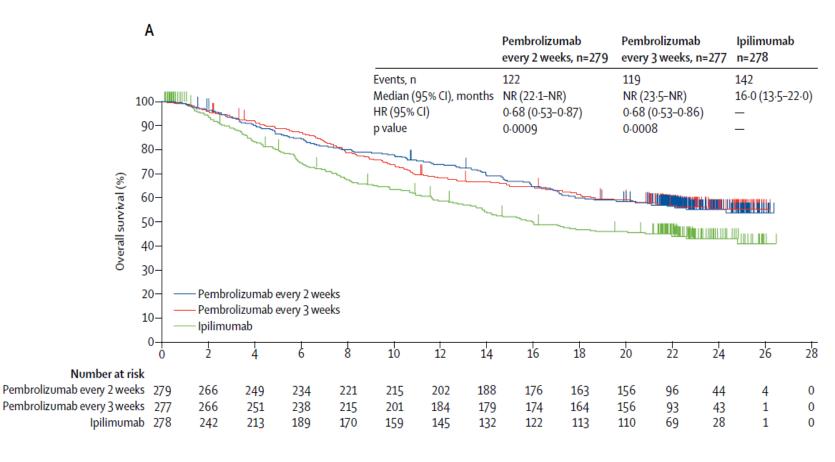
Approved checkpoint inhibitors in melanoma

Drug	Approved	Indication	Dose		
Pembrolizumab	2014	Advanced/unresectable melanoma with progression after other therapy	200 mg Q3W* or 400 mg Q6W		
	2015	1 st line unresectable/metastatic melanoma	200 mg Q3W* or 400 mg Q6W		
	2019	Adjuvant therapy of melanoma following complete resection	200 mg Q3W or 400 mg Q6W		
*Original approvals were 2 mg/kg Q3W – updated to flat dosing regimen					



Adjuvant Pembrolizumab in High-Risk Stage III Melanoma

- EORTC 1325/KEYNOTE-054 phase III trial
 - NCT02362594
 - Adjuvant pembrolizumab vs placebo
 - Pembrolizumab 200mg Q3W for up to 1 year (~18 total doses)
 - 36 mo update at ASCO 2020– HR for RFS 0.56



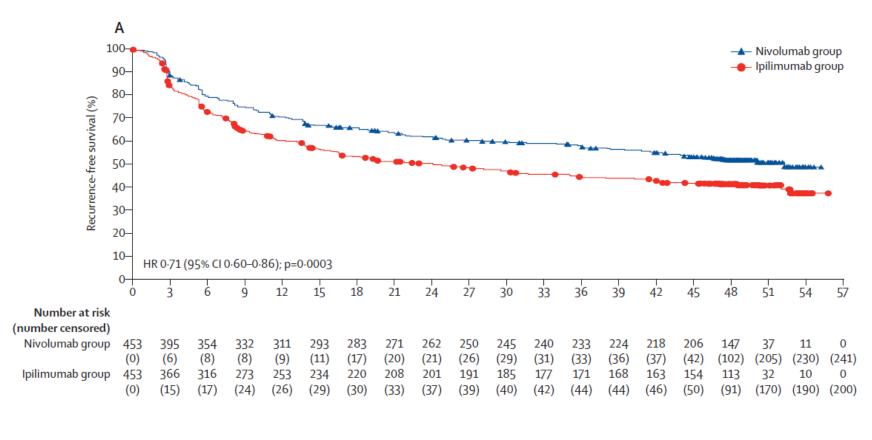
Pembrolizumab in Unresectable/Metastatic Melanoma

Phase III KEYNOTE-006 Trial

- KEYNOTE-006 (NCT01866319)
- Pembro (10 mg/kg at 2 dosing intervals) vs ipilimumab 3 mg/kg x 4 doses
- Pembro significantly improved OS and PFS vs lpi
- Dosing interval for pembro did not appear to impact efficacy

Approved checkpoint inhibitors in melanoma

Drug	Approved	Indication	Dose		
Nivolumab	2014	Unresectable/metastatic melanoma with progression after other therapy	240 mg Q2W or 480 mg Q4W*		
	2017	Adjuvant treatment of melanoma after complete resection	240 mg Q2W or 480 mg Q4W		
*Original approval was 3 mg/kg Q2W, updated to flat dosing regimen					



Adjuvant Nivolumab vs Ipilimumab in High-Risk Stage III Melanoma

- CheckMate 238 phase III trial
 - NCT02388906
 - Ipilimumab 10mg/kg Q3W for four doses, then every 3 months for up to 1 year
 - Nivolumab 3mg/kg Q2W for four doses, then every 3 months for up to 1 year

Approved checkpoint inhibitors in melanoma

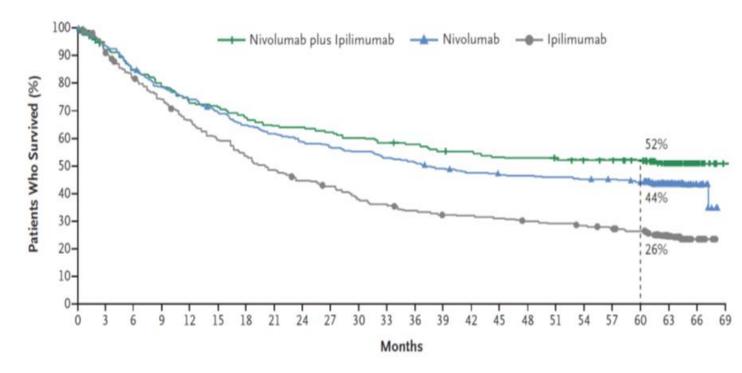
Drug	Approved	Indication	Dose
Nivolumah + Inilimumah	2015	BRAF V600 WT unresectable/metastatic melanoma	1 mg/kg nivolumab + 3 mg/kg ipilimumab Q3W for 4 doses, then nivolumab 240 mg Q2W or 480 mg Q4W
Nivolumab + Ipilimumab	2016	BRAF V600 WT or mutant unresectable/metastatic melanoma	1 mg/kg nivolumab + 3 mg/kg ipilimumab Q3W for 4 doses, then nivolumab 240 mg Q2W or 480 mg Q4W

Ipilimumab + Nivolumab in Stage III/IV Melanoma

CHECKMATE-067 (NCT01844505)

Nivo 1 mg/kg + Ipi 3 mg/kg x 4 doses ---> nivolumab 3 mg/kg q2wks

Ipilimumab


VS.

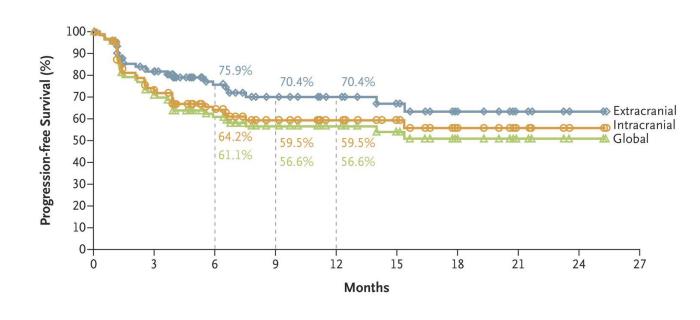
Nivo 3mg/kg q2wks

VS

Ipi 3 mg/kg q3wks x 4 doses

Both Nivo + Ipi and Nivo were superior to Ipi for OS.

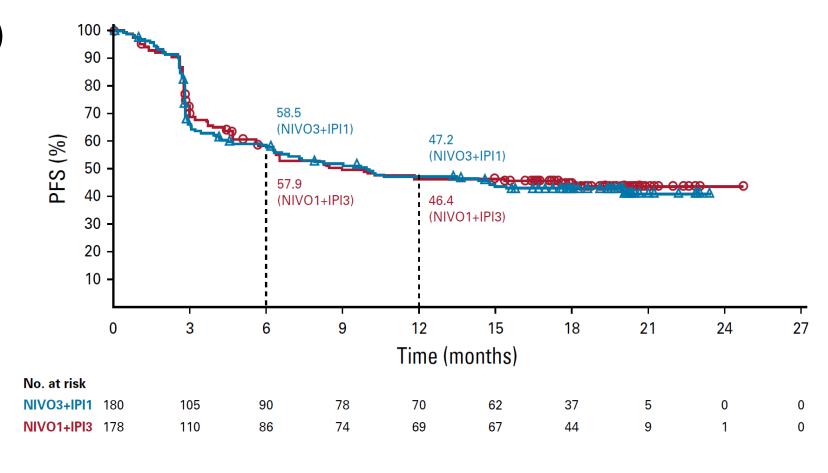
No. at Risk Nivolumab 315 285 253 227 203 181 163 148 135 128 113 107



Ipilimumab + Nivolumab for Patients with Asymptomatic Brain Metastases

Variable	Intracranial (N = 94)	Extracranial (N = 94)	Global (N=94)
Best overall response — no. (%)*			
Complete response	24 (26)	7 (7)	8 (9)
Partial response	28 (30)	40 (43)	40 (43)
Stable disease for ≥6 mo	2 (2)	6 (6)	5 (5)
Progressive disease	31 (33)	28 (30)	33 (35)
Could not be evaluated†	9 (10)	13 (14)	8 (9)
Objective response‡			
No. of patients	52	47	48
Percent of patients (95% CI)	55 (45–66)	50 (40–60)	51 (40–62)
Clinical benefit§			
No. of patients	54	53	53
Percent of patients (95% CI)	57 (47–68)	56 (46–67)	56 (46–67)

Nivolumab + Ipilimumab in Metastatic Melanoma: Alternate Dosing


CHECKMATE-511 (NCT02714218)

Standard melanoma dosing: Nivo 1 mg/kg + Ipi 3 mg/kg vs

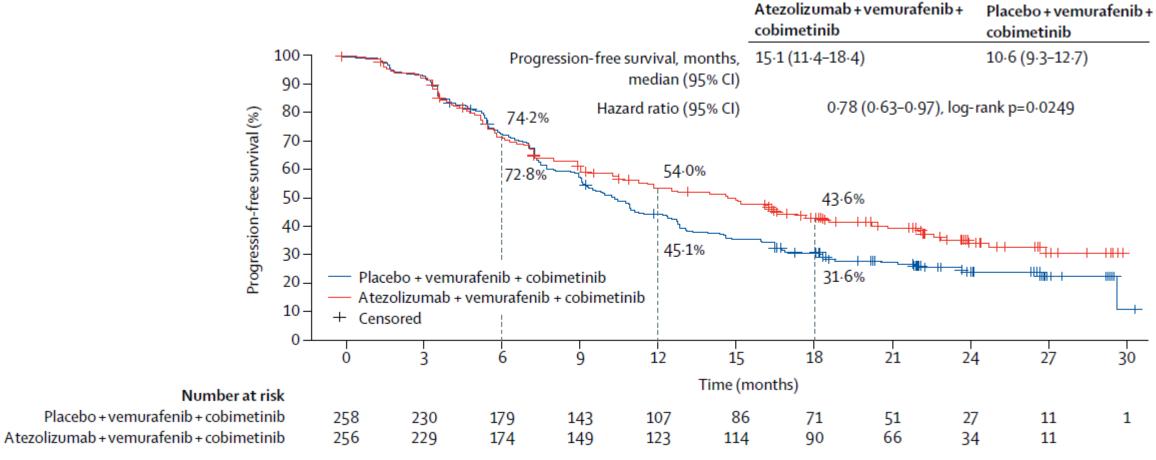
Alternate melanoma dosing: Nivo 3 mg/kg + Ipi 1 mg/kg

1° outcome: Rate of G3+ AEs

G3+ AEs significantly lower in alternate dosing (34% vs 48%)

Combination immunotherapy + BRAF/MEKi in metastatic melanoma

- IMSPIRE150 (NCT02908672)
 - Atezolizumab + cobimetinib + vemurafenib vs placebo + cobimetinib + vemurafenib
 - Both arms had 28 day treatment with cobimetinib + vemurafenib only, then began atezolizumab or placebo.
 - Improvement in PFS shown for the Atezo + Vem + Cobi arm
 - OS data is not mature
 - FDA approval given to this triplet regimen on July 30, 2020 for firstline metastatic/unresectable melanoma



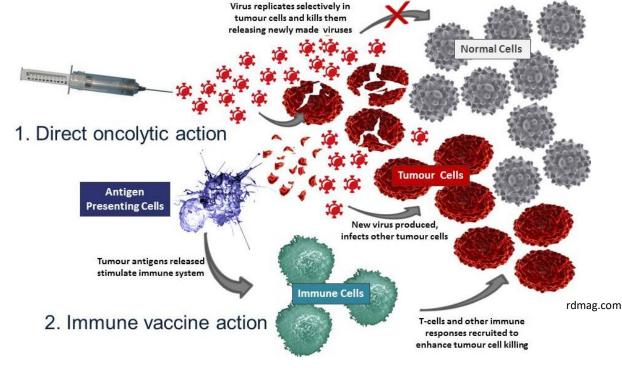
IMSPIRE150: Atezolizumab + Vemurafenib + Cobimetinib

Immunotherapy + BRAF/MEK inhibitor combination therapy

- Selected ongoing BRAF/MEK/PD-1 combination trials
 - COMBI-i: Dabrafenib/trametinib/spartalizumab (investigational PD-1 Ab) vs dabrafenib/trametinib (NCT02967692)
 - KEYNOTE-022: Dabrafenib/trametinib/pembrolizumab vs dabrafenib/trametinib (NCT02130466)

In development: Neoadjuvant immunotherapy in advanced melanoma

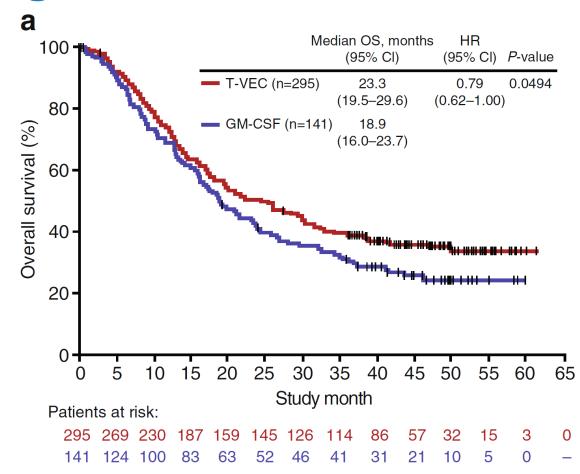
Trial	Regimen	N	pCR (%)	med RFS (mo)	med FU (mo)
Amaria Lancet Oncol 2018	Dab/Tram	21	58	19.7	18.6
Long Lancet Oncol 2019	Dab/Tram	35	49	23.0	27.0
Blank Nat Med 2018	Ipi+nivo	10	33	NR	32
Amaria Nat Med 2018	Nivo Ipi+nivo	12 11	25 45	NR NR	20
Huang Nat Med 2019	Pembro	30	19	NR	18
Rozeman Lancet Oncol 2019	lpi+nivo	86	57	NR	8.3



Approved oncolytic virus in

melanoma

Drug	Approved	Indication	Dose
Talimogene laherparepvec (T-Vec)	2015	Local treatment of unresectable cutaneous, subcutaneous, and nodal lesions in recurrent melanoma after surgery	Intralesional injection: ≤4 mL at 10 ⁶ PFU/mL starting; 10 ⁸ PFU/mL subsequent

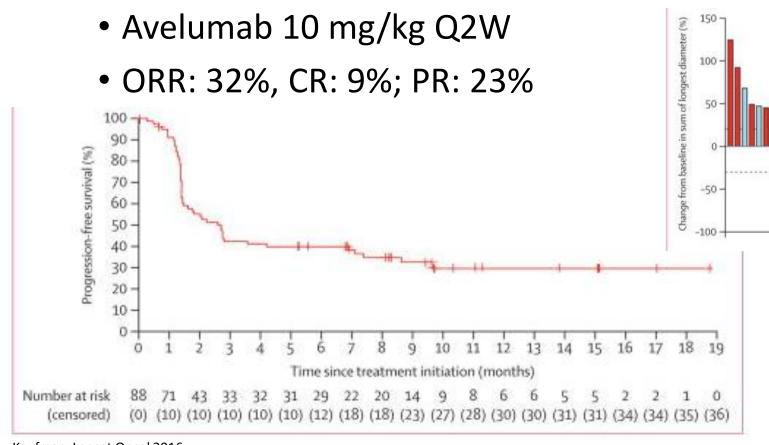


Talimogene laherparepvec (T-VEC) in Stage III/IV Melanoma

- Phase III OPTiM Trial
 - NCT00769704
 - Oncolytic, geneticallyengineered herpes virus
 - Intralesional T-VEC 106 pfu/mL, 108 pfu/mL 3 weeks after initial dose, then Q2W
 - Subcutaneous GM-CSF
 - Enrolled 2009-2011*
 - Durable response rate: 19.0%
 vs 1.4%

Approved checkpoint inhibitors in other skin cancers

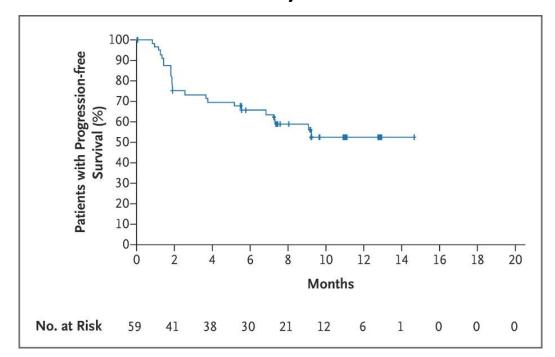
Drug	Approved	Indication	Dose
Avelumab	2017	Metastatic Merkel cell carcinoma	800 mg Q2W + premedication (first 4 cycles)
	2018	Advanced/metastatic Merkel cell carcinoma	
Pembrolizumab	2020	Metastatic cutaneous squamous cell carcinoma , not candidate for curative therapies	200 mg Q3W or 400 mg Q6W
Cemiplimab-rwlc	2018	Metastatic cutaneous squamous cell carcinoma , not candidate for curative therapies	350 mg Q3W

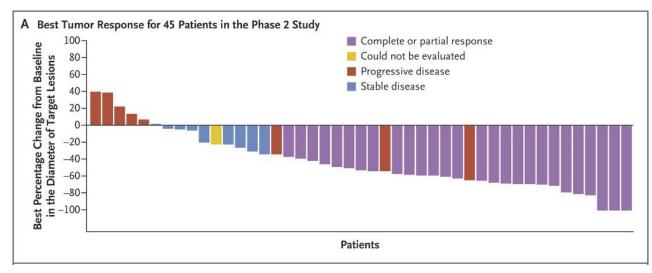


Avelumab in 2nd-line metastatic Merkel Cell carcinoma

• 1st FDA-approved treatment for this status

One previous line of any systemic therapy (n=39)
 Two or more previous lines of any systemic therapy (n=26)





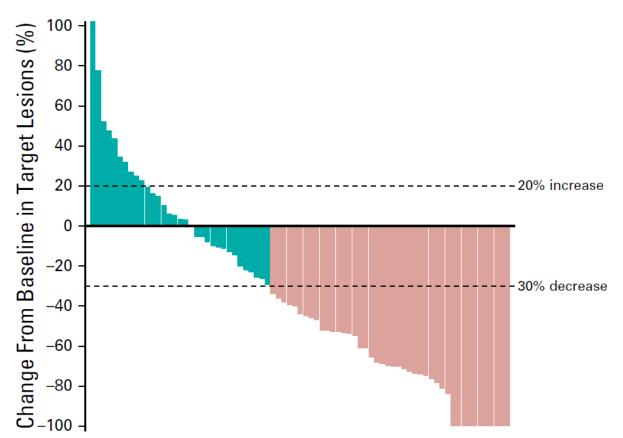
Cemiplimab in advanced/metastatic cutaneous squamous-cell carcinoma

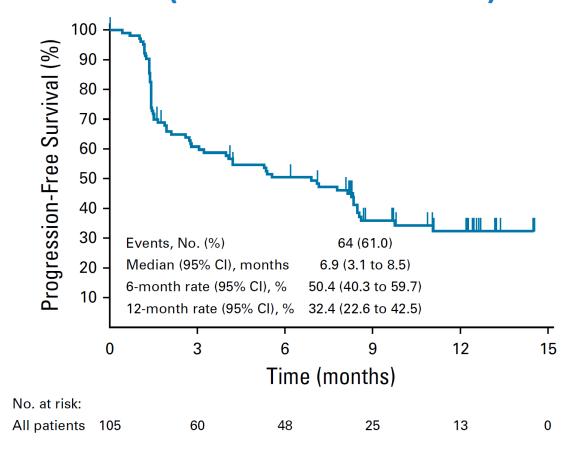
- Cemiplimab 3mg/kg Q2W
- 47% response rate in metastatic patients
- 60% of locally advanced had objective response

Migden, NEJM 2018.

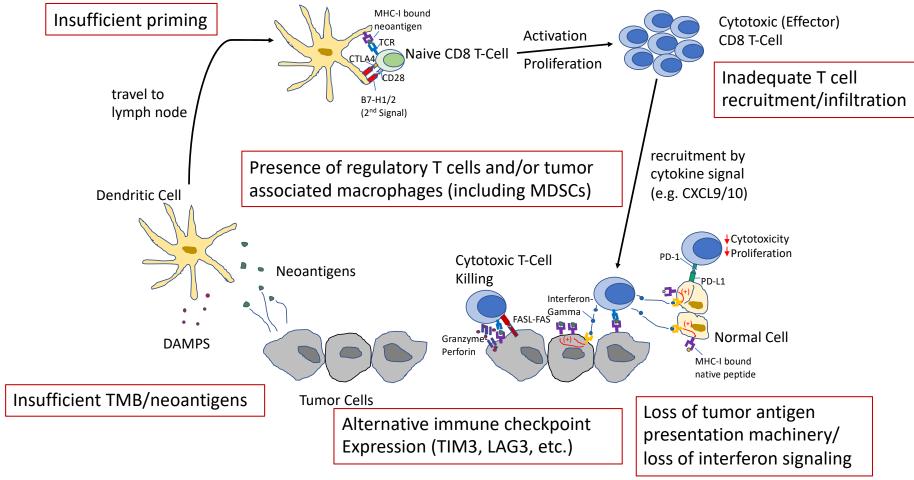
Pembrolizumab in 1st-line advanced Merkel Cell Carcinoma

- KEYNOTE-017
- Pembrolizumab 2 mg/kg Q3W up to 2 years
- mPFS: 16.8 months (compared to 90 days for chemo)
- 24-month OS: 68.7%



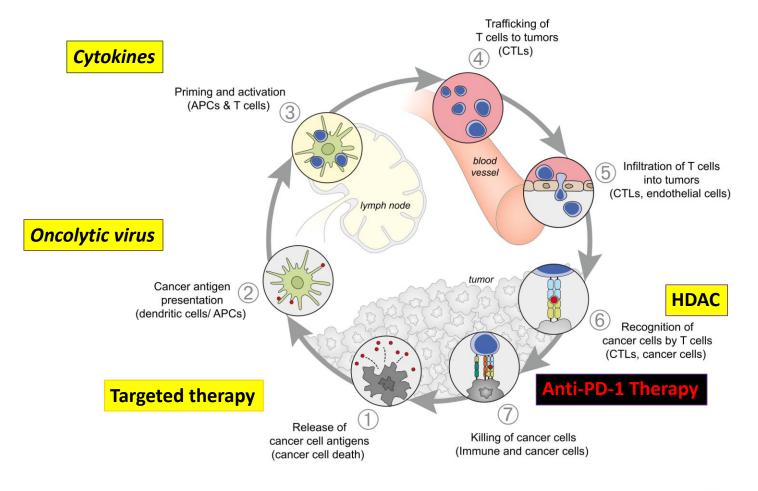


Pembrolizumab in advanced/metastatic cutaneous squamous cell carcinoma:KEYNOTE-629 (NCT03284424)



Developmental Immunotherapeutic Strategies for Melanoma

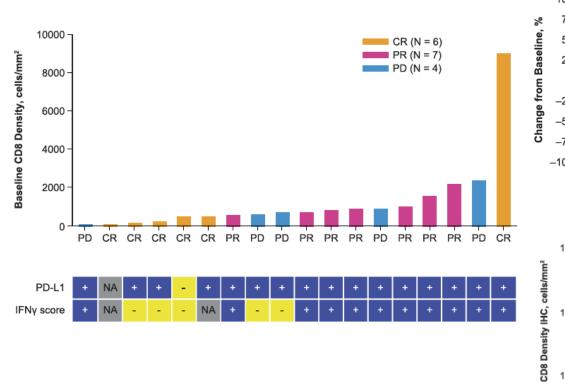
How does immune checkpoint inhibitor therapy fail?

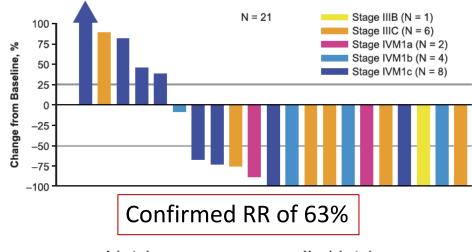


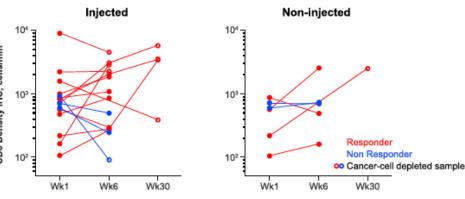
Developmental Immunotherapeutic Strategies for Melanoma

How do we overcome resistance?

Combination therapy





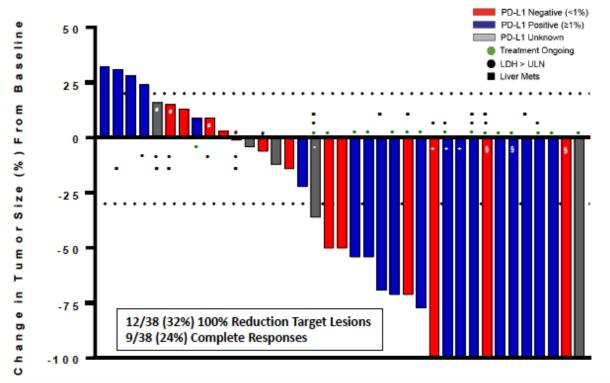


In development: Combined IO with Oncolytic Virus

Phase I: Pembrolizumab + TVEC

Multiple ongoing studies in PD-1 naïve and post-PD-1 therapy

Ribas et al Cell 2017

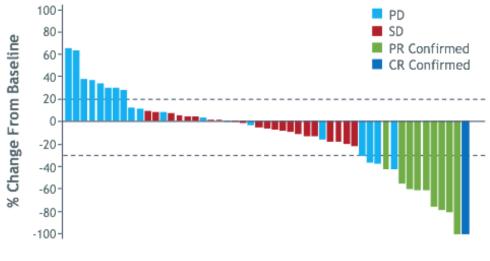


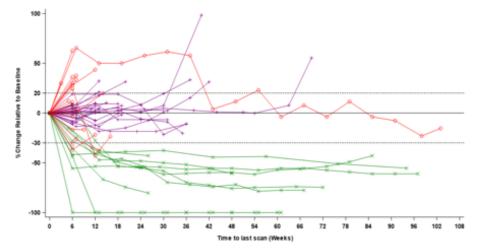
In development: Combined IO with IL-2 (NKTR-214)

Stage IV IO-Naïve 1L Melanoma Cohort at RP2D Best Overall Response by Independent Radiology

1L Melanoma (n=38 Efficacy Evaluable)	Overall Response Rate
Confirmed ORR (CR+PR)	20 (53%)
CR	9 (24%)
DCR (CR+PR+SD)	29 (76%)
PD-L1 negative (n=14)	6 (43%)
PD-L1 positive (n=19)	13 (68%)
PD-L1 unknown (n=5)	1 (20%)
LDH > ULN (n=11)	5 (45%)
Liver metastases (n=10)	5 (50%)

High level of concordance in ORR between independent central radiology (53%) and investigator-assessed 19/38 (50%).


Diab et al, ASCO 2018. Diab et al, SITC 2018.



In development: Combined IO with

HDAC inhibitor

- Entinostat +
 pembrolizumab in
 patients with prior
 PD-1 exposure
- 19% ORR (1 CR, 9 PR)
- Median duration of response: 13 mo
- 9 additional patients with SD for >6 mo

In development: IO strategies in non-melanoma skin cancers

Disease	Immunotherapy Strategy	Clinical Trial
Merkel cell carcinoma	Activated NK cells + IL-15 agonist	NCT03853317
	Gene-modified autologous T-cell therapy	NCT03747484
	Combination CTLA-4/PD-1 blockade ± radiotherapy	NCT03071406
	Intralesional TLR agonist + PD-1 antibody	NCT03684785
	Radiation therapy + PD-1 antibody	NCT03988647, NCT03304639
CSCC	Avelumab + cetuximab	NCT03944941
	PD-L1 + long-acting IL-7 compound	NCT03901573
	Intralesional autologous cancer cell/Streptococcal antigen vaccine (IFx-Hu2.0)	NCT04160065
	Intralesional Talimogene laherparepvec	NCT03714828
	Intralesional glatiramer acetate	NCT03982212
BCC	Cemiplimab	NCT03132636
	CTLA-4 + PD-1 combination immunotherapy	NCT03521830

Abbreviations: NK, natural killer; IL, interleukin; TLR, Toll-like receptor; CSCC, cutaneous squamous cell carcinoma; BCC, basal cell carcinoma.

Conclusions

- Melanoma was one of the foundational disease states for testing immunotherapies
- Avelumab and pembrolizumab are now approved for Merkel cell carcinoma, and cemiplimab is approved for cutaneous squamous cell carcinoma
- Combination immunotherapies may lead to higher response rates and more durable responses

Additional Resources

Sullivan et al. Journal for ImmunoTherapy of Cancer (2018) 6:44 https://doi.org/10.1186/s40425-018-0362-6

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

An update on the Society for Immunotherapy of Cancer consensus statement on tumor immunotherapy for the treatment of cutaneous melanoma: version 2.0

Ryan J. Sullivan¹, Michael B. Atkins², John M. Kirkwood³, Sanjiv S. Agarwala⁴, Joseph I. Clark⁵, Marc S. Ernstoff⁶, Leslie Fecher⁷, Thomas F. Gajewski⁸, Brian Gastman⁹, David H. Lawson¹⁰, Jose Lutzky¹¹, David F. McDermott¹², Kim A. Margolin¹³, Janice M. Mehnert¹⁴, Anna C. Pavlick¹⁵, Jon M. Richards¹⁶, Krista M. Rubin¹, William Sharfman¹⁷, Steven Silverstein¹⁸, Craig L. Slingluff Jr¹⁹, Vernon K. Sondak²⁰, Ahmad A. Tarhini²¹, John A. Thompson²², Walter J. Urba²³, Richard L. White²⁴, Eric D. Whitman²⁵, F. Stephen Hodi²⁶ and Howard L. Kaufman^{1*}

Case Studies

Case Study 1

38 year old male with widely metastatic BRAF V600E mutant melanoma including lung, liver, bone and a small, asymptomatic brain metastasis. LDH >2x ULN. He has significant pain related to the tumor but no headaches or associated neurologic symptoms. His goal is to optimize his chances for long-term survival.

What would you recommend as first-line treatment?

- A. Pembrolizumab
- B. Ipilimumab + nivolumab
- C. BRAF/MEK inhibitor therapy
- D. Vemurafenib/cobimetinib/atezolizumab
- E. Stereotactic radiosurgery to brain metastasis first, then subsequent systemic therapy

Case Study 2

75 yo F with history of coronary artery disease s/p PCI, COPD on home oxygen, who presents with large (6-7cm) primary, BRAF wildtype melanoma of the periorbital region after being referred from a plastic surgeon who feels that she is too high-risk for surgical resection. There is no known metastatic disease. She does not have symptoms from the mass. She wants to minimize potential side effects from medications.

What therapy do you recommend?

- A. Radiation therapy
- B. Talimogene laherparepvec (T-Vec)
- C. PD-1 monotherapy with nivolumab or pembrolizumab
- D. Nivolumab + ipilimumab
- E. Observation

Case Study 2

She proceeds to therapy with T-Vec and completes several treatments, but has clear local disease progression. There begins to be bleeding and increasing pain associated with the lesion. Restaging imaging shows no evidence of distant disease.

What would you recommend as a second-line therapy?

- A. PD-1 monotherapy (nivolumab or pembrolizumab)
- B. Nivolumab + ipilimumab
- C. Radiation therapy

