Cancer Immunotherapy with T Cells: Vaccines and Adoptive T Cell Therapy

I. T cells and tumor immunity

II. Vaccines: generate T cell response

III. T cell therapy: augment T cell response

T Cell Infiltration Predicts Survival in Ovarian Cancer

Stromal

74 advanced stage ovarian

Zhang et al, NEJM, 2003

Infiltrating Memory T Cells Predict Outcome in Colorectal Cancer

>400 samples

Pages F et al, NEJM, 2005

Factors Predicting <u>Outcome:</u> Th1 T_{EM} Central Dense

75 samples

Galon, J. et al, Science, 2006

Cancer Antigens Recognized by the Immune System

	TT	Tumour-associated antigen	Tumour
	Unique	P53	Several carcinomas
	*	KBAS2	Several carcinomas
		APC	Colorectal carcinoma
		TGFB receptor II	Colorectal carcinoma
		Caspase 8	Head and neck tumours
		β catenin	Melanoma
		, CDK4	Melanoma
		GnTV	Melanoma
		SYT-SSX fusion protein	Soft-tissue sarcoma
	Differentiation	GP100	Melanoma
	Differentiation	MART1	Melanoma
		Tyrosinase	Melanoma
		TRP1	Melanoma
		TRP2	Melanoma
		PSA, PAP, PSMA	Prostate carcinoma
	C11	Melanoma antigen family (MAGE)	Several types
	Snared	G antigen family (GAGE)	Several types
ng		B melanoma antigen (BAGE)	Several types
/112		SSX2	Several types
		SAGE1	Several types
		LAGE1	Several types
		Cancer/testis antigen NY-ESO1	Several types
		CEA	Several carcinomas
	Overexpressed	EBBB2	Several carcinomas
	_	GA733-1	Several carcinomas
		Mucin 1	Several carcinomas
		Survivin	Several types
		Telomerase	Several types
		CD55	Several carcinomas
		PRAME	Several types
		Chorionic gonadotrophin β	Several types
		α fetoprotein	Hepatocellular carcinoma
		GloboH, transcription factor α, and	Several carcinomas
		sialyl-Tn	
		Gangliosides	Melanoma
		SART1, SART2	Some carcinomas
	Foreign	F6, F7 (human papillomavirus)	Cervical carcinoma
	6	LMP2, EBNA1 (Epstein-Barr virus)	Nasopharyngeal carcinoma
		and a contract (approximation)	. as open any righter our on on the

Self Antigens

adapted from Mocellin S et al, Lancet Oncol, 2004

Pre-Existent Tumor T Cell Immunity is Low Level

Adapted from Romero et al, Immunol Rev, 2002

Cancer Immunotherapy with T Cells: Vaccines and Adoptive T Cell Therapy

I. T cells and tumor immunity

II. Vaccines: generate T cell response

III. T cell therapy: augment T cell response

Mechanisms of Ineffective Tumor Immunity

adapted from Smyth et al, Nat Immunol, 2001

Circumventing Tolerance via Treg Depletion

Knutson et al, JI, 2006

Depletion of Tregs Prior to Vaccination Enhances Immunity

XCD25-Immunotoxin enhances MR

3 id injections of tumor RNA transfected DC +/- XCD25 Immunotoxin

RENAL CELL CA

Dannull, J et al, JCI, 2005

Activating APC for Vaccination

Resting

Activated

Green: CD11c Red: CD86

Intradermal injection of cytokines: trafficking to dermis/activation

Toll-Like Receptor Ligands

Medzhitov, R. Nat Rev Immunol, 2001

Activation of Skin APC

Wagner et al, 2006

Class II

Stimulating Dendritic Cells *in situ* with CpG via TLR-9

T_{EM} with lytic activity

8 melanoma patients

Speiser et al, JCI, 2005

Manipulating the Antigen for Vaccination

Peptide Modified to Increase Class I Binding

Modified gp100 Peptide

Stage I-III melanoma: adjuvant settingModified gp100 peptide

HLA-A2 p209-2M

- Given sq in IFA q 2 or 3 weeks
- HLA-tetramer to assess immunity
- Increased peptide specific CD8+ in 28/29
- 28% of patients >1%

Smith et al, JCO, 2003

Intermediate Binding Altered Peptides are Optimal Vaccine Candidates

AH1 epitope/CT26 tumor/BLAB/c: libraries screened by T cell clone

McMahan, R et al JCI, 2006

Xenoantigen Immunization

Mouse PAP in Man

- DC pulsed with mouse PAP protein
- Highly homologous foreign protein
- 21 patients with metastatic prostate cancer
- 2 monthly vaccinations
- All patients=immunity to mouse PAP
- 50% immunity to human PAP
- 6/21 with clinical stabilization
- Stabilization associated with human PAP immunity

Fong et al, JI, 2001

Vaccinating to Induce CD4+ T Cell Immunity

HER2 Protein Immunity

Definition of Class II Epitopes

- HER2 Th peptides in GM-CSF given i.d.
- 3 peptides/vaccine
- Stage III/IV breast, ovarian, or NSCLC
- 38 patients completed all 6 immunizations
- >90% developed immunity to HER2 peptides
- >60% developed immunity to HER2 protein
- Immunity could persist>1 year
- Epitope spreading in majority=protein response

Evolving Immunity with Immunization

Intramolecular epitope spreading

Disis et al, JCO, 2002

Disis et al, J Clin Immunol, 2004

Productive Immunity Modulating the Microenvironment

Vanderlught et al, Nat Rev Immunol, 2002

DC-MUC-1 Vaccine + LD IL-2 in RCC Elicits Epitope Spreading

15% RR (PR+CR), 1 CR Induced immunity associated with response (r=0.79) (n=20)

Wierecky J et al, Ca Res, 2006

Number of vaccinations

□ OFA-1 ■ G250 □ Telomerase □ Survivin □ Adipophilin

Vaccinating Established Disease

Clinical Outcomes: Cancer Vaccines in Melanoma Patients

Vaccine	Total Patients	Responding Patients	RR%
Peptide	410	11	2.7
Viral Vector	160	3	1.9
Tumor Cells	43	2	4.6
Dendritic Cells	116	11	9.5

adapted from Banchereau et al, Nat Rev Immunol, 2005

Therapeutic Immunization

Adapted from Finn, Nat Rev Immunol, 2003

Cancer Vaccines in the Adjuvant Setting

Estimate

83%

59%

Years from Registration

>2 or 5 HLA

10

At Risk

97

78

P = .0005

Vaccine

Observation

or Death

18

32

 Table 4. Survival and Recurrence Rates for the Vaccinated and Prospectively Observed Control Groups of Patients With Node-Positive Breast Cancer

Median Follow-Up*	Vaccinated, HLA-A2+ (n = 24) (%)	Observed, HLA-A2- (n = 29) (%)
Overall survival	100	93
Disease-free survival	85.7	59.5
Recurrence rate	8.3	20.7

* Median follow-up was 22 months (range, 6 to 48 months).

Sosman et al, JCO, 2002

20%

0%

Peoples G. et al, JCO, 2005

Cancer Immunotherapy with T Cells: Vaccines and Adoptive T Cell Therapy

I. T cells and tumor immunity

II. Vaccines: generate T cell response

III. T cell therapy: augment T cell response

Intervention Based on Tumor Burden

Long Term Survival after Transplant Relapse with DLI

Collins et al, JCO, 1997

Transfer of Tumor Competent T Cells

Clones Enriched PBMC TIL Gene Modified Cells

Gattinoni L et al Nat Rev Immunol, 2006

Adoptive T Cell Therapy with CD8+ T Cell Clones

Infusion of MART-1 CD8+ T Cell Clones

Yee, C et al, PNAS, 2002

Adoptive Transfer of Expanded TIL After Induction of Lymphopenia

- 35 patients with MM
- Cytoxan/Fludarabine
- TIL + HD IL-2
- 18/35 (51%) had objective clinical response
 - 3 CR
 - 15 PR
- 1 patient: EBV lymphoma

Dudley M et al, JCO, 2005

Lymphodepletion Will Enhance T Cell Expansion *in vivo*

- Removal of cells (e.g. NK) that consume critical cytokines, IL-7, IL-15
- Preferential depletion of T regulatory cells
- Homeostatic proliferation

under normal homeostasis

Repopulation with tumor-Agspecific T cells

Klebanoff CA et al, Trend Immunol, 2006

T Cells Genetically Engineered to Express Functional MART-1 TCR

MART-1 TCR from CR TIL

CD8

Cohorts based on cell doubling time Infused when actively dividing

12% Partial Response Rate

Tumor regression

Morgan RA et al, Science, 2006

Effect of Adoptively Transferred T Cells in vivo

Persistence

Immune Escape

Dudley M et al, JCO 2005

Successful Immunity Leads to Immunoediting

Dunn et al, Nature Immunol, 2002

Generating Anti-Tumor T Cell Immunity: Effectors and the Environment

adapted from Zou, Nat Rev Ca, 2005