

PARKER INSTITUTE FOR CANCER IMMUNOTHERAPY

Synthetic Immunology Harnessing the Tools of Synthetic Biology and Gene Editing to Engineer Next-Generation Immune Cell

Justin Eyquem, PhD Parker Fellow Immunology & Microbiology UCSF

SITC - Houston Jan 16th 2020

T Cell Receptor (TCR)

The TCR/CD3 complex and costimulatory constellation

Chimeric Antigen Receptor (CAR)

The TCR/CD3 complex and costimulatory constellation

Monoclonal Antibody

Chimeric Antigen Receptors (CAR)

The TCR/CD3 complex and costimulatory constellation

CARs

Maher, Nat Biotech 2002

Sadelain, Riviere & Brentjens, Nat Rev Cancer, 2003 Sadelain, AACR Education Program, 2014

Chimeric Antigen Receptors (CAR)

- Recognize cell surface antigen
- HLA independent
- T cell reprogramming

Maher, Nat Biotech 2002 Sadelain, Riviere & Brentjens, Nat Rev Cancer, 2003 Sadelain, AACR Education Program, 2014

A historical perspective: early CAR designs

Adapted from Van der Stegen, Nat. Drug Discov 2015

CAR needs costimulation

Maher, Nat Biotech., 2002

A historical perspective: second gen CAR designs

Adapted from Van der Stegen, Nat. Drug Discov 2015

CAR needs costimulation

Maher, Nat Biotech., 2002

2nd and 3rd gen CAR family

Selecting CD19 as a target for CAR therapy

Chimeric Antigen Receptors (CARs)

Rapid Tumor elimination mediated by 1928z T cells in patient with refractory relapsed ALL

Brentjens, Davila, Riviere et al, Science Transl Med, 2013

CD19 targeting CAR for Relapsed, Chemo-refractory ALL

Center	Disease	CAR	Vector	Patients	CR rate
MSKCC Park, 2018	ALL (Ad.)	CD28	γRV	53	83%
Upenn Maud, 2018	ALL (Paed.)	4-1BB	LV	75	81%
NCI Lee, 2015	ALL (Paed.)	CD28	γRV	21	68%
FHCRC Turtle, 2016	ALL (Ad.)	4-1BB	LV	29	93%
UCL Qasim, 2015	ALL (Paed.)	4-1BB	LV	2	100%

Adapted from Sadelain et al. Nature 2017

Limits in CAR T cells

Relapse

- Low / negative antigen
- CAR not sensitive to low antigen
- Poor T cell persistence

Toxicities

- Cytokine Release Syndrome
- Cerebral Edema

Moderate activity in solid tumor

- Lack of ideal target
- Inefficient T cell homing
- T cell exhaustion/dysfunction

Manufacturing

- Cost
- Variability in the final product

Retroviral vectors: semi-random integration

Craigie and Bushmann Microbiol. Spectr. 2014

Shah et al. Blood. 2019

Retroviral vectors: variegated expression

g-Retrovirus

Lentivirus

Zhao et al. Cancer cell 2015

Milone et al. Molecular Therapy 2009

Ways to improve CAR T cells

Ways to improve CAR T cells

GOAL:

- 1. Control/Improve persistence
- 2. Prevent T cell exhaustion
- 3. Address tumor heterogeneity/target safety
- 4. Standardized manufacturing/reducing cost

Tools:

- 1. Gene editing
- 2. CAR design
- 3. Logic gates
- 4. SynNotch

Gene edited CAR T cells

Genetic engineering

Zinc Finger Nuclease (ZFN)

TAL Effector Nuclease

(TALEN)

Meganuclease

CRISPR/Cas9

Chandrasegaran, Carroll, Porteus, Stoddard, Dujon, Choulika, Belfort, Bonas, Bogdanove, Voytas, Joung, Doudna, Charpentier, Barrangou, Zhang, Church

Adapted form Joung et al. Nat biotech 2013

Genome editing

Nuclease-induced double-strand break

Adapted form Joung et al. Nat biotech 2013

Genome editing

Nuclease-induced double-strand break

Gene disruption

Adapted form Joung et al. Nat biotech 2013

Genome editing

Gene disruption

uption Gene tageting or correction

Editing CAR T cells

> Gene disruption

- Allogeneic:
 - TCR alpha/beta
 - B2M
- Checkpoints: PD1
- Cell death: Fas
- Drug resistance:
 - CD52 (Alemtuzumab)
 - dCK (Clofarabine)
- Exhaustion
 - NR4A
 - TOX and TOX2

Torikai 2012, Berdien 2014, Poirot 2015 Ren 2017 Su 2016, Rupp 2017 Ren 2017 Poirot 2015 Valton 2016

Chen 2019

Seo 2019

Targeting the CAR transgene

Eyquem, Mansilla-Soto et al., *Nature 2017*

Homogeneous and Predictable CAR expression

n=12

Eyquem, Mansilla-Soto et al., *Nature 2017*

New Targeting constructs

TRAC-CAR T cells outperform other loci and promoters

5e5 Nalm6 in NSG -1e5 CAR T cells

Model

Model

Model

Model

Model - CAR expression / CAR T cells function

New TRAC-CAR cassettes

Eyquem et al., Unpublished

New TRAC-CAR cassettes

Eyquem et al., Unpublished

Different baseline level

Eyquem et al., Unpublished

Different baseline level - similar regulation

TRAC: An optimal locus for CARs and TCRs

- Safer: targeted and promoter-less
- Standardized: Homogeneous, predictable expression
- Controlled: Improves therapeutic activity
- Flexible: cassette design, expression levels
- Scalable: Large clinical grade production on going
- Adaptable to every editing platform

Next-generation CAR Designs

Next-Generation CARs with New Signaling Properties

Tuning CAR Signaling Through Signaling Motif Mutagenesis

Feucht J et al. Nat Med. 2019

Balancing CAR Signaling Improve Therapeutic Efficacy

Adding New Signaling Capabilities to CARs

Adding New Signaling Capabilities to CARs

Kagoya Y et al. Nat Med. 2018

Adding New Signaling Capabilities to CARs

Controlling Engineered T cell Activity and Specificity

NextGen T cell Therapies

IMPROVING ENGINEERED T CELLS

Controlling T cell Activity/Specificity

- Small molecule control
- Antigen switching

Logic Gating

- Multi-receptor systems
 - AND logic CARs
 - CAR/inhibitory CARs
 - synNotch/CAR circuits

Enhancing & Sculpting T cell Activity

- cytokine/chemokine production
- customization of responses

Drug Controlled Costimulation An Approach to Titrate Engineered T cell Effector Function

Target

NFAT

Activation

Proliferation

Conventional CAR-T Technology vs. GoCAR-T

http://www.bellicum.com/technology/gocart/

Universal CAR T cells Changing Antigen Specificity During Treatment

Universal CAR T cells Changing Antigen Specificity During Treatment

Logic-gated Immune Cell Therapeutics Enhancing Specificity and Safety

Redirecting the Specificity of T cells to Cancer The Pitfalls of Single Antigen Targeting

Limiting Fraticide Killing Targeting T cell leukemia

Neg. Ctrl

72h

48h

24h

0h

Gomez-Silva et. al Blood 2017

AND Gate CAR T cells Separating Signal 1 (TCR) and Signal 2 (Costimulation)

Kloss CC. Nat Biotech. 2013

NK cell-like Activation Paradigm for Engineered T cells with Inhibitory CARs (iCARs)

Fedorov VD. Sci Trans Med. 2013

The Notch Receptor

A Natural Environmental Sensor that Regulates Cells Through DIRECT Transcriptional Regulation

Roybal and Morsut et al. Cell. 2016

Synthetic Notch Receptors

Customizable Cellular Sensing and Response Programs

SynNotch Receptors Drive Custom Transcriptional Circuits in Response to Tumor Antigens

SynNotch/CAR T cells Exclusively Target Dual Antigen Tumors In vivo

SynNotch/CAR T cells Exclusively Target Dual Antigen Tumors In vivo

Enhancing and Sculpting the Immune Response

CAR T cells that Express Cytokines that Enhance Antitumor Immunity

Hijacking physiological transcriptional control to express therapeutic payload

Sachdeva et al,. Nat Com 2019

Hijacking physiological transcriptional control to express therapeutic payload

Sachdeva et al,. Nat Com 2019

The Potential to Engineer Customized Therapeutic T cell Response Programs with SynNotch Receptors

Roybal et al. Cell. 2016b

Customized T cell Responses with Synthetic Notch Receptors

SynNotch Receptors Drive the Local Production of Therapeutic Antibodies *in vivo*

Custom T cell Response Programs with synthetic immunology

· Manufacturing

Don't forget

- · Immunogenicity
- \cdot FDA

Looking for postdocs

justin.eyquem@ucsf.edu

Thank you!

Eyquem Lab

William Nyberg, Phd

August Dietrich, MD Alexis Talbot, MD

Fundings:

The Stephen and Nancy Grand Multiple Myeloma Translational Initiative

UCSF

Kole Roybal Dan Goodman

Alex Marson Franzi Blaeschke Murad Mamedov

Qizhi Tang Patrick Ho

Lewis Lanier Avishai Shemesh **MSKCC**

Arsenal

Theo Roth

Michel Sadelain

Jorge Mansilla-Soto Theodoros Giavridis Sjoukje van der Stegen Mohamad Hamieh Judith Feucht

Biostatistics Kristen Cunanan Mithat Gönen

Isabelle Rivière Susan Zabierowski Xuiyan Wang

Marcel Van Der Brink Melody Smith