Synthetic Immunology
 Harnessing the Tools of Synthetic Biology and Gene Editing to Engineer Next-Generation Immune Cell

Justin Eyquem, PhD

Parker Fellow
Immunology \& Microbiology
UCSF
SITC - Houston
Jan 16th 2020

T Cell Receptor (TCR)

The TCR/CD3 complex and costimulatory constellation

Chimeric Antigen Receptor (CAR)

The TCR/CD3 complex and costimulatory constellation

Monoclonal Antibody

Chimeric Antigen Receptors (CAR)

The TCR/CD3 complex and costimulatory constellation

CARs

Maher, Nat Biotech 2002
Sadelain, Riviere \& Brentiens, Nat Rev Cancer, 2003
Sadelain, AACR Education Program, 2014

Chimeric Antigen Receptors (CAR)

- Recognize cell surface antigen
- HLA independent
- T cell reprogramming

Maher, Nat Biotech 2002
Sadelain, Riviere \& Brentjens, Nat Rev Cancer, 2003
Sadelain, AACR Education Program, 2014

A historical perspective: early CAR designs

a

Inving,
Cell, 1991

Romeo,	Letoumeur,
Cell, 1991	PNAS, 1991

b

Eshar,
PNAS, 1993

CAR needs costimulation

A historical perspective: second gen CAR designs

CAR needs costimulation

$2^{\text {nd }}$ and $3^{\text {rd }}$ gen CAR family

Maher et al, Nat Biotech, 2002

Imai et al, Leukemia, 2004; Finney et al, J Immunol, 2004

Finney et al, J Immunol, 2004

Finney et al, J Immunol, 2004

Pule et al, Mol Ther, 2005

Pule et al,
Hum Gene Ther, 2007

Selecting CD19 as a target for CAR therapy

CD19
CD20

Cell surface CD19 and CD20 expression during B-cell development. LeBien \& Tedder, Blood, 2008.

Chimeric Antigen Receptors (CARs)

Rapid Tumor elimination mediated by $1928 z$ T cells in patient with refractory relapsed ALL

Brentjens, Davila, Riviere et al, Science Transl Med, 2013

CD19 targeting CAR for Relapsed, Chemo-refractory ALL

Center	Disease	CAR	Vector	Patients	CR rate
MSKCC Park, 2018 Upenn	ALL (Ad.)	CD28	үRV	53	$\mathbf{8 3 \%}$
Maud, 2018 NCI Lee, 2015 FHCRC Turtie, 2016 UCL Qasim, 2015	ALL (Paed.)	ALL (Paed.)	ALL (Ad.)	CD28 (Paed.)	4-1BB

Adapted from Sadelain et al. Nature 2017

Limits in CAR T cells

Relapse

- Low / negative antigen
- CAR not sensitive to low antigen
- Poor T cell persistence

Toxicities

- Cytokine Release Syndrome
- Cerebral Edema

Moderate activity in solid tumor

- Lack of ideal target
- Inefficient T cell homing
- T cell exhaustion/dysfunction

Manufacturing
 - Cost
 - Variability in the final product

Retroviral vectors: semi-random integration

Fraietta et al. Nature. 2018

CBL

Shah et al. Blood. 2019

Retroviral vectors: variegated expression

g-Retrovirus

Lentivirus

Zhao et al. Cancer cell 2015
Milone et al. Molecular Therapy 2009

Ways to improve CAR T cells

Ways to improve CAR T cells

GOAL:

1. Control/mprove persistence
2. Prevent T cell exhaustion
3. Address tumor heterogeneity/target safety
4. Standardized manufacturing/reducing cost

Tools:

1. Gene editing
2. CAR design
3. Logic gates
4. SynNotch

Gene edited CAR T cells

Genetic engineering

Zinc Finger Nuclease
(ZFN)

TAL Effector Nuclease
(TALEN)

Meganuclease
CRISPR/Cas9

Chandrasegaran, Carroll, Porteus, Stoddard, Dujon, Choulika, Belfort, Bonas, Bogdanove, Voytas, Joung, Doudna, Charpentier, Barrangou, Zhang, Church

Genome editing

Nuclease-induced double-strand break

Genome editing

Nuclease-induced double-strand break

Gene disruption

Genome editing

Nuclease-induced double-strand break

Gene disruption Gene tageting or correction

Editing CAR T cells

» Gene disruption

- Allogeneic:
- TCR alpha/beta
- B2M
- Checkpoints: PD1
- Cell death: Fas
- Drug resistance:
- CD52 (Alemtuzumab)
- dCK (Clofarabine)

Poirot 2015
Valton 2016

- Exhaustion
- NR4A
- TOX and TOX2

Ren 2017
Su 2016, Rupp 2017
Ren 2017

告

Chen 2019
Seo 2019

Torikai 2012, Berdien 2014, Poirot 2015

Targeting the CAR transgene

TRAC

Efficient CAR KI

Eyquem, Mansilla-Soto et al., Nature 2017

Homogeneous and Predictable CAR expression

$\mathrm{n}=12$

Eyquem, Mansilla-Soto et al., Nature 2017

TRAC-CAR T cells display superior in vivo activity

TRAC-CAR T cells are less exhausted

New Targeting constructs

TRAC-CAR T cells outperform other loci and promoters

Model

\rightarrow TRAC-1928z

- RV-1928z

Model

\rightarrow TRAC-1928z
\rightarrow RV-1928z
Antigen dependent

Model

\rightarrow TRAC-1928z

- RV-1928z

Antigen dependent
Transcriptional

Model

Model - CAR expression / CAR T cells function

No tumor control	TRAC	Differentiation- exhaustion	

Toxicity?

New TRAC-CAR cassettes

New TRAC-CAR cassettes

Different baseline level

Eyquem et al., Unpublished

Different baseline level - similar regulation

Eyquem et al., Unpublished

TRAC: An optimal locus for CARs and TCRs

- Safer: targeted and promoter-less
- Standardized: Homogeneous, predictable expression
- Controlled: Improves therapeutic activity
- Flexible: cassette design, expression levels
- Scalable: Large clinical grade production on going
- Adaptable to every editing platform

Next-generation CAR Designs

Next-Generation CARs with New Signaling Properties

Tuning CAR Signaling Through Signaling Motif Mutagenesis

NALM-6 (CD19+ Tumor)

Balancing CAR Signaling Improve Therapeutic Efficacy

Adding New Signaling Capabilities to CARs

Enhanced proliferation and efficacy?

Adding New Signaling Capabilities to CARs

Kagoya Y et al. Nat Med. 2018

Adding New Signaling Capabilities to CARs

Kagoya Y et al. Nat Med. 2018

NextGen T cell Therapies

```
IMPROVING ENGINEERED T CELLS
Controlling T cell Activity/Specificity
- Small molecule control
- Antigen switching
Logic Gating
- Multi-receptor systems
    - AND logic CARs
    - CAR/inhibitory CARs
    - synNotch/CAR circuits
Enhancing & Sculpting T cell Activity
- cytokine/chemokine production
- customization of responses
```


Drug Controlled CAR Activation

Remote Control of Adoptive T cell Therapies

Drug Controlled Costimulation
 An Approach to Titrate Engineered T cell Effector Function

http://www.bellicum.com/technology/gocart/

Universal CAR T cells
 Changing Antigen Specificity During Treatment

Universal CAR T cells
 Changing Antigen Specificity During Treatment

Redirecting the Specificity of T cells to Cancer The Pitfalls of Single Antigen Targeting

Limiting Fraticide Killing

Targeting T cell leukemia

D

AND Gate CAR T cells

Separating Signal 1 (TCR) and Signal 2 (Costimulation)

NK cell-like Activation Paradigm for Engineered T cells

 with Inhibitory CARs (iCARs)

The Notch Receptor
 A Natural Environmental Sensor that Regulates Cells Through DIRECT Transcriptional Regulation

Roybal and Morsut et al. Cell. 2016

Synthetic Notch Receptors

Customizable Cellular Sensing and Response Programs

SynNotch Receptors Drive Custom Transcriptional Circuits in Response to Tumor Antigens

SynNotch/CAR T cells Exclusively Target Dual Antigen Tumors In vivo

-
 4

Enhancing and Sculpting thelmane Response

-

CAR T cells that Express Cytokines that Enhance Antitumor Immunity

\bigcirc P NFAT.mIL12.PA2, 0.1×10^{6}
\longrightarrow No treatment

$$
\begin{aligned}
& \square \text { P GFP, } 1 \times 10^{6} \\
& \square \text { P GFP, } 3 \times 10^{6}
\end{aligned}
$$

$$
\text { P NFAT.mIL12.PA2, } 1 \times 10^{6}
$$

$$
\text { - P NFAT.mIL12.PA2, } 3 \times 10^{6}
$$

Hijacking physiological transcriptional control to express therapeutic payload

Sachdeva et al,. Nat Com 2019

Hijacking physiological transcriptional control to express therapeutic payload

CD25-IL12

- - TRAC ${ }_{\text {car }}$
- - TRAC $_{\text {CAR }}$ CD25 ${ }_{\text {IL12 }}$

PD1 - IL12

The Potential to Engineer Customized Therapeutic T cell Response Programs with SynNotch Receptors

Roybal et al. Cell. 2016b

Customized T cell Responses with Synthetic Notch Receptors

SynNotch Receptors Drive the Local Production of Therapeutic Antibodies in vivo

Don't forget

- Manufacturing
 - Immunogenicity
 - FDA

Looking for postdocs

justin.eyquem@ucsf.edu

UCSF

Thank you!

Eyquem Lab

William Nyberg, Phd

August Dietrich, MD

Alexis Talbot, MD

Fundings
PARKER INSTITUTE FOR CANCER I M M U N O T HERAPY

UCSF

Kole Roybal

Dan Goodman

Alex Marson

Franzi Blaeschke
Murad Mamedov

Qizhi Tang
Patrick Ho

Lewis Lanier
Avishai Shemesh

The Stephen and Nancy Grand Multiple Myeloma Translational Initiative

MSKCC

Michel Sadelain
Jorge Mansilla-Soto
Theodoros Giavridis
Sjoukje van der Stegen
Mohamad Hamieh
Judith Feucht

Biostatistics
Kristen Cunanan
Mithat Gönen

Isabelle Rivière
Susan Zabierowski
Xuiyan Wang
Marcel Van Der Brink Melody Smith

Arsenal

Theo Roth

