

Immunotherapy for the Treatment of Hematologic Malignancies

Kieron Dunleavy M.D.

Professor of Medicine George Washington University Director Lymphoma Program GW Cancer Center

Society for Immunotherapy of Cancer

Disclosures

- Consulting Fees: Amgen, Abbvie, Astra Zeneca, Haryophatm, Pharmacyclics, Morphosys, Gebmab, Bayer.
- I will be discussing non-FDA approved indications during my presentation.

unotherapy of Cancer

sitc

Checkpoint inhibitors

FDA-approved Checkpoint inhibitors: Lymphoma

Drug	Approved	Indication	Dose
Nivolumab	2016	Classical Hodgkin lymphoma, relapsed after HSCT and brentuximab vedotin or ≥3 previous therapies	240 mg q2w or 480 mg q4w
Pembrolizumab	2017	Adult/pediatric refractory classical Hodgkin lymphoma or relapsed after 3 previous therapies	200 mg q3w adults 2 mg/kg (up to 200 mg) q3w (pediatric)
Pembrolizumab	2018	Adult/pediatric refractory primary mediastinal large B-cell lymphoma or relapsed after 2 previous therapies	200 mg q3W adults 2 mg/kg (up to 200 mg) q3w (pediatric)

Checkpoint inhibitors: Hodgkin Lymphoma

Armand, J Clin Oncol 2018. Chen, J Clin Oncol 2017. © 2019–2020 Society for Immunotherapy of Cancer

Pembrolizumab in Primary Mediastinal Large B cell Lymphoma

In development: Macrophage checkpoint: CD47

- Phase 1b: Hu5F9-G4 + rituximab in rituximab refractory disease
- DLBCL ORR = 40%, CR = 33%
- Follicular lymphoma ORR = 71%, CR = 43%

Bi-specific T-cell engagers (BiTEs)

BiTE (Blinatumomab) Therapy

- Facilitates T cell engagement with CD19+ tumor cells (Similar to CD19 CAR T)
- Approval:
- Adult/pediatric R/R B-cell precursor acute lymphoblastic leukemia
- Adult/pediatric B-cell precursor acute lymphoblastic leukemia in 1st or 2nd complete remission, MRD ≥ 0.1%

Blinatumomab: B-ALL

Antibody-drug conjugates (ADC)

FDA-Approved Antibody-Drug Conjugates

Drug	Target antigen	Year of approval	Indication
Brentuximab vedotin	CD30	2011	 Classical Hodgkin lymphoma, relapsed after HSCT or ≥2 previous therapies Anaplastic large cell lymphoma ≥ 1 previous therapies
		2018	cHL - first line with combination chemo
Inotuzumab ozogamicin	CD22	2017	Relapsed/refractory/MRD+ B-cell ALL
Polatuzumab vedotin (w/ bendamustine & rituximab)	CD79b	2019	DLBCL \geq 2 previous therapies

Polatuzumab vedotin has demonstrated efficacy in R/R DLBCL in combination with rituximab^{1,2} and rituximab-bendamustine³

Treatment	Best overall response
Pola +/- rituximab	51-56% ^{1,2}
Pola + rituximab + bendamustine	68% ³

ADC, antibody-drug conjugate; MMAE, monomethyl auristatin E

1. Palanca-Wessels A, et al. Lancet Oncol 2015;16:704–15; 2. Morschhauser F, et al. Lancet Hematology 2019;6:e254–65; 3. Sehn H, et al. Blood 2018;132:1683

Polatuzumab vedotin: DLBCL

- Randomized phase 2 study
- Pola-BR vs. BR in R/R DLBCL
- Higher CR = 40% vs. 18% (p: 0.03)
- Median PFS = 7.6 m (HR=0.34, p<0.01)
- Median OS = 12.4 m (HR=0.42, p<0.01)
- Ongoing phase 3 (POLARIX)
- Frontline DLBCL- R-CHOP vs R-CHP+Pola

Sehn, Blood 2018. © 2019–2020 Society for Immunotherapy of Cancer

No. at risk Pola-BR(Ph II) 40 38 33 29 29 25 23 21 21 21 19 18 16 14 12 11 11 8 7 7 7 6 5 1 1 BR(Ph II) 40 30 24 18 12 9 7 6 6 5 4 4 4 4 3 3 3 3 3 3 2 1 1 1 1 1

Inotuzumab ozogamicin for ALL

- Anti-CD22 antibody conjugated to calicheamicin
- Higher response, MRD-negativity, PFS, and OS than standard-of-care

Chimeric Antigen Receptor Therapy (CAR T)

Chimeric antigen receptors

- Specific and potent: B specific, T toxic
- Overcome immune tolerance
- Targets surface molecules in native conformation
- Independent of antigen presenting cell and MHC complex

Evolution of CAR Constructs

Society for Immunotherapy of Cancer

ADVANCES IN 🥖

IMMUNOTHERAPY"

anotherapy of Cancer

sitc

CAR T manufacturing and administration

CAR T Side Effects

- Cytokine Release Syndrome (CRS)
- Neurotoxicity
- B Cell aplasia
- Macrophage Activation Syndrome (MAS)/HLH

CAR T Side Effects

FDA-Approved CAR T cell therapies

DRUG	APPROVED	INDICATION	DOSE
Axicabtagene ciloleucel	2017	Adults with r/r large B-cell lymphoma. Including diffuse large B-cell lymphoma, primary mediastinal large B-cell lymphoma, high-grade B- cell lymphoma, and DLBCL arising from follicular lymphoma	2 x 10 ⁶ CAR-positive, viable T-cells per kg bodyweight (up to 2x10 ⁸)
Tisagenlecleucel	2017	Patients ≤25 yr with refractory B-cell acute lymphoblastic leukemia or in 2+ relapse	0.2-0.5x10 ⁶ CAR-positive, viable T- cells per kg if under 50 kg 0.1-2.5x10 ⁸ CAR-positive, viable T- cells if over 50 kg
Tisagenlecleucel	2018	Adults with r/r large B-cell lymphoma after 2+ therapies Including DLBCL, high-grade B-cell lymphoma, DLBCL arising from follicular lymphoma	0.6-6.0 x 10 ⁸ CAR-positive, viable T- cells

Eligibility considerations for CAR

- Disease
 - Relative stability during CAR T manufacturing (~2-6 weeks)
 - Bridging therapy (chemo, RT, steroids, lenalidomide, ibrutinib)
 - CNS control
- Patient
 - Adequate cell counts
 - DVT, bleeding, infection, neuro disorders
 - Functional status: at screen vs. day of CAR T infusion
- Other
 - Social support, reimbursement

CD19 CAR in DLBCL- ZUMA1 (Axi-cel)

- CD19/CD283
- ORR = 82%
- CR = 54%
- 1.5-yr estimated OS = 52%
- CRS grade ≥3 = 13%
- Neurotox grade \geq 3 = 28%

CD19 CAR in DLBCL - JULIET (Tisa-cel)

- CD19/4-1-BB
- ORR = 52%
- CR = 40%
- 1-yr estimated OS = 49%
- CRS grade ≥3 = 18%
- Neurotox grade ≥3 = 11%

CD19 CAR in DLBCL - TRANSCEND (Liso-Cel)

- CD19/4-1-BB, CD4:CD8 = 1:1
- ORR = 75%
- CR = 55%
- 1-yr estimated OS = 59%
- CRS grade $\geq 3 = 1\%$
- Neurotox grade \geq 3 = 13%

CD19 CAR in B-ALL: ELIANA (Tisa-cel)

- CD19/4-1-BB
- ORR = 81%
- CR = 60%, CRi = 21%
- CRS grade ≥3 = 47%
- Neurotox grade $\geq 3 = 13\%$

Months since Tisagenlecleucel Infusion

ACCC

sitc

In Development: BCMA+ CAR T Therapy for Myeloma

- bb2121
 - B cell maturation antigen (BCMA)
 - Phase I CRB-401 study
 - Previously treated patients with relapsed/refractory multiple myeloma
 - ORR: 85%, CR: 45%

Conclusions

- Many immunotherapy options for hematological malignancies
- Checkpoint inhibitors for Hodgkin lymphoma and PMBCL high response rate, excellent tolerance, durable responses if CR
- Blinatumomab and inotuzumab for ALL effective salvage, deeper remissions
- Polatuzumab vedotin for DLBCL effective salvage, potential to become frontline
- CAR T therapy ever-increasing indications; patient selection and toxicity management still concerns

Additional Resources

Boyiadzis et al. Journal for ImmunoTherapy of Cancer (2016) 4:90 DOI 10.1186/s40425-016-0188-z

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of hematologic malignancies: multiple myeloma, lymphoma, and acute leukemia

Michael Boyiadzis^{1†}, Michael R. Bishop^{2†}, Rafat Abonour³, Kenneth C. Anderson⁴, Stephen M. Ansell⁵, David Avigan⁶, Lisa Barbarotta⁷, Austin John Barrett⁸, Koen Van Besien⁹, P. Leif Bergsagel¹⁰, Ivan Borrello¹¹, Joshua Brody¹², Jill Brufsky¹³, Mitchell Cairo¹⁴, Ajai Chari¹², Adam Cohen¹⁵, Jorge Cortes¹⁶, Stephen J. Forman¹⁷, Jonathan W. Friedberg¹⁸, Ephraim J. Fuchs¹⁹, Steven D. Gore²⁰, Sundar Jagannath¹², Brad S. Kahl²¹, Justin Kline²², James N. Kochenderfer²³, Larry W. Kwak²⁴, Ronald Levy²⁵, Marcos de Lima²⁶, Mark R. Litzow²⁷, Anuj Mahindra²⁸, Jeffrey Miller²⁹, Nikhil C. Munshi³⁰, Robert Z. Orlowski³¹, John M. Pagel³², David L. Porter³³, Stephen J. Russell⁵, Karl Schwartz³⁴, Margaret A. Shipp³⁵, David Siegel³⁶, Richard M. Stone⁴, Martin S. Tallman³⁷, John M. Timmerman³⁸, Frits Van Rhee³⁹, Edmund K. Waller⁴⁰, Ann Welsh⁴¹, Michael Werner⁴², Peter H. Wiernik⁴³ and Madhav V. Dhodapkar^{44*}

Open Access

Case Studies

- 67 year-old male
- Stage III DLBCL with IPI of 3.
- High proliferation rate (90%). IHC: CD10-, BCL6- and MUM1 +. MYC 30% and BCL2 40%.
- FISH negative for BCL2 and MYC.

- 67 year-old male
- Stage III DLBCL with IPI of 3.
- High proliferation rate (90%). IHC: CD10-, BCL6- and MUM1 +. MYC 30% and BCL2 40%.
- FISH negative for BCL2 and MYC.

Lymph node biopsy: diffuse large B-cell lymphoma – non GCB subtype

- 1. R-CHOP
- 2. R-CHOP + ibrutinib
- 3. R-CHOP + lenalidomide
- 4. DA-EPOCH-R
- 5. R-CHOP + bortezomib

. Received R-CHOP x 6 cycles

. CR by EOT-PET

. Remained in CR for 9 months

. Relapsed with diffuse lymphadenopathy and high LDH

Repeat biopsy – recurrent DLBCL

• RICE x 4 cycles

Achieved CR

6 months later – diffuse lymphadenopathy and high LDH

Imaging and biopsy confirm recurrent disease

Next Treatment?

- 1. Anti CD-19 CAR T-cells
- 2. Anti CD20/CD3 bi-specific antibody
- 3. Allogeneic transplant
- 4. Polatuzumab + BR
- 5. Tafacitamab + lenalidomide

Case Study 2

- 29 year old female
- 4 week history of cough and shortness of breath
- Imaging 13 cm mediastinal mass and diffuse lymphadenopathy above and below the diaphragm
- Biopsy- aggressive B-cell lymphoma
- Diagnosis Primary Mediastinal B-Cell lymphoma

Treatment

• R-CHOP x 6 cycles

• Initial CR but relapse within 3 months of treatment

• Received RICE with a view to auto transplant but progression on this.

Next Treatment?

- 1. Anti CD-19 CAR T-cells
- 2. Anti CD20/CD3 bi-specific antibody
- 3. Allogeneic transplant
- 4. Pembrolizumab
- 5. Tafacitamab + lenalidomide