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I Hate p-Values!
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I Hate p-Values
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I Hate p-Values

Ronald Aylmer Fisher
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What’s the Story with p < 0.05?
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What’s the Story with p < 0.05?
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Multiple Comparions

• If you report many p-values, you increase your family-wise error rate

• How many tests did you run, and how many did you report?

• Adjust. . .
• Bonferroni
• Tukey
• Stepdown

• These will reduce your FWER, but impact your power. You could not
adjust. . .
• Say how many tests you ran
• Don’t adjust the tests
• Let the reader decide

9 / 59



Repeated Measures Are Your
Friends
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What Is The Point Here?

• How many animals are in each
curve?

• How many animals are being lost to
ethical sacrifice?

• Are we just interested in the
comparison at one time point?

• Why are the confidence intervals
getting bigger?
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A Better Idea

• Linearize exponential growth with the log transform

• Fit a line to each animal

• The slope of the line is the tumor growth rate

• Compare growth rates between treatment groups

• No bias induced by ethical sacrifice

• Increase statistical power

• Use all the data!
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Fit The Animals, Average the Fits
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Repeated Measures in Xenograft Experiments

• Random slopes and intercepts (mixed effects) model does the analysis above
in one model

log2(Vij(t)) = αi + βi t + aij + bijt + eijt

Pop. Animal Noise

• Compare βs using Wald-type tests

• Software
• SAS Proc Mixed
• R function lmer() in package lmerTest
• Python function mixedlm() in package statsmodels
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“Broken Stick” Model
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I Agree With Leslie
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A Good Book
Not to be confused with The Good Book

17 / 59



What Is All This?
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What Is Data Science?

• Term was coined by Bell Labs Statistician Bill Cleveland in 1991

• He used it to compare (favorably) a proposed course of training to mine:
• Explicit training in computer programming
• Training in data wrangling
• Emphasis on collaborative research

• Some data science programs will have more emphasis on advanced applied
computing (e.g., how to use a Hadoop Cluster) and machine learning
techniques
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What Is Machine Learning?

• Machine learning emphasizes Predictive Modeling, not inference (no
p-values!)

• It includes many traditional statistical methods: regression, logistic
regression, principal components, regularized regression

• It also includes “black box” predictive modeling methods that many
statisticians know about, too: random forests, neural nets, ensemble
modeling, support vector machines

• These methods can offer excellent predictive performance in cases of
significant nonlinearity or very many predictors
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What Is Random Forests?

• It’s souped up Recursive
Partitioning ⇒
• Regression or Classification

• Recursive Partitioning has a
reputation for over-fitting and
sensitivity to small permutations in
the data

• So, Leo Breiman fixed it
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What Is Random Forests?

• Do the following many (>tens of thousands of) times:
• Take a bootstrap sample (with replacement) of the inputs and outputs in

the training set
• Take a random sample of the inputs (

√
p)

• Fit the bootstrap sample inputs to the outputs using the random sample of
the inputs

• Average the predictions of all those trees

• It works better. You can demonstrate it.
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What Is A Neural Net?

• It’s a bunch of logistic regressions that feed into each other to ultimately
produce a prediction
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What Is A Neural Net?

• Estimation of the models’ parameters are done by backpropagation

• The estimation can be time consuming, but the resulting predictions can be
made really fast

• There are implementations in R, Python, SAS and Matlab (and elsewhere,
I’m sure)
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What Is Deep Learning?

• A neural net with more layers

• It’s getting deep in here. . .
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What Is Deep Learning?
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25 / 59



What Is An Ensemble Model?

• Run all the methods above to build predictive models

• Average them
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Another Good Book
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What Is Artifical Intelligence?
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What Is Artifical Intelligence?

Who the knows?
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Optimal Dichotimization
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There Is An Optimal Cutpoint. Just Sayin’

Expected Cost of a Decision

• Assign a unit to Population 1 or 2 based on a continuous random variable x

• The cost of correct classification is 0

• C1 > 0 is the cost of assigning a member of Population 1 to Population 2

• C2 > 0 is the cost of assigning a member of Population 2 to Population 1

• It is also possible to generalize to the case where there is a non-zero cost of
a correct decision

• π is the prevalence of population 1 in the mixture

• Assume WLOG that the rule is: Assign member to Population 1 if x 6 c

31 / 59



Optimal Cutpoint

Minimize the Expected Cost

• The expected cost of this rule is:

E (c) = πC1

∫ c

−∞ f1(x)dx + (1 − π)C2

∫∞
c

f2(x)dx

= πC1F1(c) + (1 − π)C2(1 − F2(c))

• To find the optimal value of c , set

d

dc
E (c) = 0
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Optimal Cutpoint

Minimize the Expected Cost

• Then,

d

dc
E (c) = πC1f1(c) − (1 − π)C2f2(c) = 0⇒

πC1f1(c) = (1 − π)C2f2(c)⇒
πC1

(1 − π)C2
=

f2(c)

f1(c)

• This is the Bayes minimum risk decision rule

33 / 59



Optimal Cutpoint

• Need π,C1,C2, f1 and f2
• f1 and f2 can be estimated from a sample

• π is the prevalence in the population, not in the sample

• It’s hard to come to a consensus on C1 and C2,

• Especially when one of the costs involves death
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What is Bayesian Statistics,
Anyway?
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Why Consider Bayesian Methods?

• Explicitly incorporate information outside the experiment into the data
analysis

• Great flexibility in probability models

• Allow multiple looks at the data without penalty for multiple tests

• Monitoring clinical trials

• Model-based Phase I designs

• Response- and biomarker-adaptive clinical trials
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The Frequentist Model of the Universe
• Repeated sampling of a random variable, {X1,X2,X3 . . .} is described by a

probability distribution function, indexed by parameters, e.g., µ,σ,π . . .
• These parameters are unobservable and fixed
• Example: number of heads in n = 10 coin tosses, where π = 1/2:

P(x heads in n tosses |π) =

(
x

n

)
πx(1 − π)n−x
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Yet Another
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The Bayesian Model of the Universe

• Repeated sampling of a random variable, {X1,X2,X3 . . .} is described by a
probability distribution function, indexed by parameters, e.g., µ,σ,π . . .

• These parameters are unobservable and random

• The parameters, being random variables themselves, have a probability
distribution function themselves, which is called a prior distribution

• Example: number of heads in ten coin tosses:

P(x heads in n tosses|π) =

(
x

n

)
πx(1 − π)n−x

π ∼ Beta(α,β)

• α and β are called the prior parameters or metaparameters. They are set by
the analyst.
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The Bayesian Model of the Universe

• Posterior← Prior + Data

• The endpoint of a Bayesian analysis is a statement about the posterior
distribution function (i.e., after the data have been observed) of the
parameters of the probability function of the data
• Frequentist: “A 95% confidence interval for π is (0.25, 0.45)”
• Bayesian: “There is a 95% probability that π is between 0.25 and 0.45”

• Note that these are not the same

• The Bayesian model is convenient in continuous (or frequent) monitoring of
clinical trials because hypothesis testing is not involved, so there is no
inflation of the Type I error from multiple testing
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Example: Toxicity Monitoring

• “Accrual will be halted and the trial will be reëvaluated if
P(P(Toxicity) > 0.3) > 0.6”

• We have a belief, not very strong, that the probability of toxicity, π, is
around 0.2, so we choose a Beta(1,4) prior, which has the weight of
1 + 4 = 5 observations.
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Example: Toxicity Monitoring
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Bayesian Statistics in Medical Device Trials

• FDA defines a medical device as as any product that does not achieve its
purposes by chemical action or metabolization

• Many types of devices:

Contact lenses Breast implants MRI machines
Surgical instruments Hip replacements Thermometers

Artificial hearts Hearing aids Latex gloves
Surgical stents Diagnostic tests Defibrillators

• Many (1,000s) small manufacturers

• Average life length of a device is two years

• Registration system for medical devices differs from that of drugs
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Bayesian Statistics in Medical Device Trials

• There are three classes of medical devices:
• Class 1: Low risk, requiring only general controls (examples: adhesive

bandage, sunglasses)
• Class 2: Moderate risk, requiring general controls and special controls

(examples: syringe, surgical mask, powered wheelchair)
• Class 3: High risk, requiring general controls and pre-marketing approval

(examples: heart valves, implantable neuromuscular stimulator)
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Bayesian Statistics in Medical Device Trials

• General controls:
• Adulteration and misbranding
• Quality systems
• Labeling
• Medical device reporting
• Electronic Establishment Registration
• Electronic Device Listing
• Premarket Notification [510(k)]
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Bayesian Statistics in Medical Device Trials

• Special controls:
• Guidelines (e.g., Glove Manual)
• Mandatory Performance Standard
• Recommendations or Other Actions
• Special Labeling, specified in detail in 21 CFR 882
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Bayesian Statistics in Medical Device Trials

• Pre-marketing approval:
• Requires negotiation with FDA
• Standards differ depending on the similarity of the new devices to existing

devices already marketed
• May or may not require a clinical trial
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Bayesian Statistics in Medical Device Trials

• Much prior information on similar devices

• For registration trials, FDA requires data-derived priors

• FDA negotiates with sponsor before registration trial on what constitutes
valid prior data

• Prior data can be proprietary or publicly available

• Simulations are used to demonstrate operating characteristics

• Required sample sizes can be significantly decreased

• Sometimes use formal economic risk/benefit analysis
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Bayesian Medical Device Trial Example

• TherOx Downstream Aqueous Oxygen System

• Device used to deliver superoxygenated blood to patient’s heart after MI

• FDA agreed to single randomized, controlled pivotal trial, AMIHOT I 1

1No, I did not make this up.
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AMIHOT I

• 289 patients from 23 centers, randomized 1:1

• Trial designed for noninferiority of safety endpoint (death, stroke, etc.)

• Trial designed for superiority of efficacy endpoint (infarct size at 14 days,
WMSI at three months)

• Safety endpoint succeeded: 9/134 treated versus 7/135 control SAEs,
p <0.022

• All three efficacy endpoints failed, all p >0.24

• Post-hoc analysis showed efficacy in anterior MI subset within 6 hours of MI
only, all p <0.04, based on 100 patients
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AMIHOT II

• Since the results of AMIHOT I weren’t very hot, the sponsors proposed
AMIHOT II

• 317 patients from 22 centers, 2.8:1

• Same endpoints as AMIHOT I, anterior MI patients < 6 hours out only

• Safety goal: show P(πT < πC + 0.06 | data and prior) > 0.95

• Hierarchical Bayesian model using all AMIHOT I data
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AMIHOT II

• Hierarchical Bayesian models for safety and efficacy using all AMIHOT I
data used four subgroups:
• Non-anterior MI, >6 Hours (AMIHOT I only)
• Non-anterior MI, 66 Hours (AMIHOT I only)
• Anterior MI, >6 Hours (AMIHOT I only)
• Anterior MI, 66 Hours (AMIHOT I & AMIHOT II)

• Safety model is specified on next slide as an example:
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AMIHOT II Hierarchical Bayesian Model for Safety
• Let i = 1, 2 index study (AIHOT I or II)
• Let j = 1, 2, 3, 4 index subgroup (as above)
• Let r be a safety-related event, C be control and T be treatment
• Population model:

rCij ∼ Binomial(nCij ,πC
ij )

rTij ∼ Binomial(nTij ,πT
ij )

• Parameter model:

λCij = logit(πC
ij )

λCij = µ0 +ω
C
j + γC

i

πT
ij = πC

ij + δ0 +ω
T
j + γT

i I (0, 1)

ωC
j ∼ Normal(0,φ2

ω), γ
C
j ∼ Normal(0,φ2

γ),

ωT
j ∼ Normal(0, τ2ω), γ

T
j ∼ Normal(0, τ2γ)
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Three Rules From Wise Men

54 / 59



Nelson Algren (1909-81)

• Writer

• The Man With The Golden Arm

• A Walk On The Wild Side

• Simone de Beauvoir’s lover!

• 500 page FBI dossier
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Nelson Algren’s Three Rules

• Never eat at a place named “Mom’s”

• Never play cards with a man named “Doc”

• Never sleep with somebody who’s got more troubles than you have
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Walter Cronkite (1916-2009)

• CBS Evening News anchor for 19
years

• “The Most Trusted Man In
America”

• Anchored all the moon landings

• If I’ve lost Cronkite, I’ve lost Middle
America–Lyndon Johnson
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Walter Cronkite’s Three Rules for Old Men

• Never pass up a free drink

• Never

• Never
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Walter Cronkite’s Three Rules for Old Men
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The End!
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