

Patient Selection, Efficacy and Biomarkers

Natalie I. Vokes, MD

Assistant Professor, MD Anderson Cancer Center

Disclosures

- Consultant for Sanofi, Oncocyte, and Lilly; research funding from Oncocyte.
- I will not be discussing non-FDA approved indications during my presentation.

Outline

- Existing ICI biomarkers and their role/limitations
- Landscape of novel genomic and molecular biomarkers
- Emerging challenges: treatment synergy and selecting combination therapies

Challenge: immune checkpoint inhibitors provide durable long-term response – to a *minority* of patients

PD-L1, MSI status, and TMB are the only FDAapproved biomarkers to date

© 2021–2022 Society for Immunotherapy of Cancer

#LearnAC

Emens et al., *Eur J Cancer* 2017 Haslam & Prasad, *JAMA Network Open* 2019

Tumor mutation burden (TMB) and immune checkpoint inhibitor (ICI) outcomes

#LearnACI © 2021–2022 Society for Immunotherapy of Cancer

Snyder et al NEJM 2014Van Allen et al Science 2015Rizvi et al Science 2015Le et al NEJM 2015Slide courtesy of Eli Van Allen

Challenge: selecting optimal TMB threshold for patient stratification

Tumor type	Study and therapy	Sequencing Methodology	Reporting	Cutoff for high TMB
NSCLC	KEYNOTE-001 Pembrolizumab	WES	Nonsynonymous mutations	≥178 mutations
NSCLC	POPLAR, FIR, and BIRCH Atezolizumab	FoundationOne (315 genes)	SNVs (synonymous and nonsynonymous) and indels	≥13.5 mut/Mb (1 st line); ≥17.1 or ≥15.8 mut/Mb (2 nd line) (≥75 th %ile)
NSCLC	CheckMate 026 Nivolumab	WES	Missense mutations per sample (tumor and blood)	≥243 mutations (upper tertile)
NSCLC	Real-world MSKCC population Pembrolizumab or nivolumab	MSK-IMPACT	Nonsynonymous mutations	≥7.4 mut/Mb (median)
Multiple (solid tumors)	KEYNOTE-012 & -028 Pembrolizumab	WES	Nonsynonymous mutations	≥102 mutations
Urothelial carcinoma	IMvigor 210 Atezolizumab	FoundationOne (315 genes)	SNVs (synonymous and nonsynonymous) and indels	>16 mut/Mb
NSCLC	POPLAR and OAK Atezolizumab	bTMB assay (FoundationOne, 394 genes)	SNVs (synonymous and nonsynonymous)	≥14 mut/Mb
SCLC	CheckMate 032 Nivolumab ± ipilimumab	WES	Missense mutations	≥248 mutations (upper tertile)
NSCLC	CheckMate 012 Nivolumab + ipilimumab	WES	Nonsynonymous mutations (SNVs or indels)	>158 (median), or ≥307 mutations (upper quartile)
Melanoma	CheckMate 038 Nivolumab ± ipilimumab	WES	Nonsynonymous mutations (SNVs or indels)	≥100 mutations
Urothelial carcinoma	CheckMate 275 Nivolumab	WES	Missense mutations	≥167 mutations (upper tertile)
NSCLC	CheckMate 227 & 568 Nivolumab and ipilimumab	FoundationOne CDx (324 genes)	SNVs (synonymous and nonsynonymous) and indels	≥10 mut/Mb
NSCLC	B-F1RST Atezolizumab	bTMB assay (FoundationOne, 394 genes)	SNVs (synonymous and nonsynonymous)	≥14 mut/Mb

© 2021–2022 Society for Immunotherapy of Cancer

#L

Stenzinger et al, Genes Chromosomes Cancer 2019

TMB imperfectly segregates patients who benefit from ICIs

#LearnACI © 2021–2022 Society for Immunotherapy of Cancer

Cut-point analysis demonstrates trade-off in over- vs under-treatment

Z-score cut-off	DFCI TMB	MSKCC TMB	Sens (%)	Spec (%)	DCB rate (%)	OR (p- value)	#≥ cut-of	# not treated	# treated w/o response
-0.44	7.34	3.77	86.1	24.2	33	1.99 (<0.01)	394	21 (4%)	263 (53%)
0.28	11.9	7.18	61.8	57.3	39	2.18 (< 0.01)	242	58 (12%)	148 (30%)
1.16	20.6	15.1	25.0	90.5	54	3.16 (< 0.01)	71	114 (23%)	33 (7%)
3.10	61.4	68.2	1.3	99.7	67	4.59 (0.22)	3	150 (30%)	1 (0.2%)

© 2021–2022 Society for Immunotherapy of Cancer

Limited evidence underlying FDA approval of TMB

- June, 2020: pembrolizumab approved in second-line in patients with TMB ≥ 10
- Approval based on Keynote-158 in a prospectively planned, retrospective analysis of 10 cohorts of patients

Table 58: Efficacy Results for Patients with TMB-H Cancer in KEYNOTE-158

En du ciut	KEYTRUDA 200 mg every 3 weeks					
Enapoint	TMB ≥10 mut/Mb n=102*	TMB ≥13 mut/Mb n=70				
Objective Response Rate						
ORR (95% CI)	29% (21, 39)	37% (26, 50)				
Complete response rate	4%	3%				
Partial response rate	25%	34%				
Duration of Response	n=30	n=26				
Median in months (range) [†]	NR (2.2+, 34.8+)	NR (2.2+, 34.8+)				
% with duration ≥12 months	57%	58%				
% with duration ≥24 months	50%	50%				

ORR in (32) pts with TMB \ge 10 & < 13: 13%

sitc

Limitations to FDA approval

- Approval based on response, not on overall survival
- 'Tumor agnostic' approval
 - Only ten subtypes studied e.g. breast and prostate cancers not included
 - Adds little efficacy data to tumor types without pre-existing FDA approvals
- TMB cut-off remains problematic no evidence that 10 is the best cut-off, within or across tumor types

Overall*	N 102	Objective Re n (%)	esponse Rate 95% Cl (21%, 20%)	Duration of Response range (months)
Small cell lung cancer	34	10 (29%)	(15%, 47%)	(4.1, 32.5+)
Cervical cancer	16	5 (31%)	(11%, 59%)	(3.7+, 34.8+)
Endometrial cancer	15	7 (47%)	(21%, 73%)	(8.4+, 33.9+)
Anal cancel	14	I (1 %)	(0.2%, 34%)	10.0+
Vulvar cancer	12	2 (17%)	(2%, 48%)	(8.8, 11.0)
Neuroendocrine cancer	5	2 (40%)	(5%, 85%)	(2.2+, 32.6+)
Salivary cancer	3	PR, SD, PD		31.3+
Thyroid cancer	2	CR, CR		(8.2, 33.2+)
Mesothelioma cancer	1	PD		

Table 59: Response by Tumor Type (TMB ≥10 mut/Mb)

No TMB-H patients were identified in the cholangiocarcinoma cohort

© 2021–2022 Society for Immunotherapy of Cancer

TMB does not associate with response in never smokers

ROC curve of TMB in never smokers

© 2021–2022 Society for Immunotherapy of Cancer

Not all TMB, and not TMB contexts, are the same

PD-L1 may be a continuous biomarker without a clear cut-point

100

(%)

© 2021–2022 Society for Immunotherapy of Cancer

Alguilar et al, Annals of Oncol, 2019

Median PFS (95% CI)

14.5 months (6.0-NR)

4.1 months (1.7-6.6)

N

80

107

PD-L1 90-100%

PD-L1 50-89%

PD-L1 may have similar limitations as TMB as a biomarker

Take away

• Current FDA-approved biomarkers can help predict the likelihood of ICI-response, but they are imperfect and should not be used to exclude patients from an otherwise appropriate trial of ICIs.

Outline

- Existing ICI biomarkers and their role/limitations
- Landscape of novel genomic and molecular biomarkers
- Emerging challenges: treatment synergy and selecting combination therapies

STK11 and KEAP1 alterations associate with inferior outcomes to ICIs

ICI monotherapy

KL 54(0) 11(2) 5(3) 4(3) 2(4) 2(4) 1(4) 1(4) 0(4) K^{MUT}STK11^{WT} 120(0) 55(3) 34(9) 18(18) 8(27) 3(29) 2(29) 1(29) 0(30)

© 2021–2022 Society for Immunotherapy of Cancer

ICI plus chemotherapy

		mPFS	(months)								
Subgroup	N	STK11 ^{WI}	STK11 ^{MUT}	HR (95% CI)		Unst	ratified I	IR for	progression	or death	h
All patients	436	7	4.8	1.5 (1.1,1.9)					HH I	_	
KRAS status										1	
Mutant	206	6.7	4.3	1.6 (1.1,2.2)					H		
Wild-type	230	7.1	6.4	1.2 (0.8,1.9)				-			
ECOG score										-	
0-1	382	7.6	5.1	1.5 (1.2,2)					H		
> 1	53	3.2	1.6	1.7 (0.8,3.3)				-	•	-	
PD-L1 TPS								1			
≥ 1%	217	5.4	5.7	1.6 (1.1,2.3)					—		
< 1%	169	6.8	4.5	1.1 (0.8,1.7)				-			
TMB* (mut/Mb)								i			
High (≥8.58)	37	11.2	6.1	1.7 (0.6,4.2)						-	
Low (< 8.58)	64	11.2	6.1	1.5 (0.8,2.6)				- ++			
					0.125	0.25	0.5	1	2	4	8
					Fav	ors STK1	1 ^{MUT}	_	Favo	rs STK11	WT

		mPFS(months)								
Subgroup	Ν	KEAP1 W	KEAP1 ^{MUT}	HR (95% CI)		Unstratified HR for progression or d		n or death	1		
All patients	144	5.7	2.8	2.2 (1.5,3.3)				⊢→	-		
KRAS status											
Mutant	73	5.6	2	2.3 (1.3,3.9)					_		
Wild-type	71	6.2	4.3	2.2 (1.1,4.1)				⊢ →			
ECOG score											
0-1	129	6.1	3.5	2.2 (1.4,3.4)				→	-		
> 1	15	3.9	1.6	1.4 (0.5,4.1)		-		+	_		
FU-L1 1F5											
≥ 1%	58	5.2	1.6	3.1 (1.6,6.1)					+	2	
< 1%	67	7.4	4.3	1.8 (1,3.2)				⊢	-		
IMB. (MAAND)											
High (≥8.58)	36	12.4	1.9	5.5 (2,15.5)				-		•	-
Low (<8.58)	60	12.4	1.9	1.5 (0.8,2.7)			F	+	-		
					0.25	0.5		1 2	4	8	- 4

Skoulidis F et al., *Cancer Discov*, 2018 Skoulidis F et al, in preparation Slide courtesy of Dr F. Skoulidis

However, co-mutations may modulate this association

Onco-genotype	mPFS	mOS
KRAS ^{MUT} ;STK11 ^{WT}	4.8m	17.3m
KRAS ^{MUT} ;STK11 ^{MUT}	2.0m	6.2m
KRAS ^{WT} ;STK11 ^{WT}	2.8m	12.4m
KRAS ^{WT} ;STK11 ^{MUT}	2.5m	13.0m
KRAS ^{MUT} ;KEAP1 ^{WT}	4.6m	18.4m
KRAS ^{MUT} ;KEAP1 ^{MUT}	1.8m	4.8m
KRAS ^{WT} ;KEAP1 ^{WT}	2.7m	12.4m
KRAS ^{WT} ;KEAP1 ^{MUT}	3.4m	13.0m

© 2021–2022 Society for Immunotherapy of Cancer

HLA type and zygosity are proposed biomarkers...

HLA zygosity

HLA-B44 type

© 2021–2022 Society for Immunotherapy of Cancer

#LearnACI

But HLA heterozygosity doesn't validate

#LearnACI

© 2021–2022 Society for Immunotherapy of Cancer Heterozygous

Number at ris

С

Time

However, work is ongoing and novel analyses may implicate new biology

B Cohort and tumour type			
	Number of events/ number of patients		HR for overall survival (95% CI)
MSK-IMPACT all tumour types*	340/1166	-•-	1.48 (1.20–1.82)
DFCI Profile all tumour types†	753/1326	-•-	1.22 (1.05–1.42)
Bladder cancer			
MSK-IMPACT	36/87		1.57 (0.92–2.70)
DFCI profile	88/152	—• —	1.54 (1.0–2.39)
JAVELIN Solid Tumour trial	169/128	—• —	1.36 (1.01–1.85)
Glioma			
MSK-IMPACT	22/82		1.49 (0.77–2.89)
DFCI profile	112/140		1.34 (0.89–2.00)
Melanoma			
MSK-IMPACT	46/246	_ _	1.81 (1.00-3.24)
DFCI Profile	34/125	_	1.40 (0.71-2.80)
NSCLC			
MSK-IMPACT	91/271	_	1.53 (0.89–2.62)
DFCI profile	477/829	- - -	1.19 (0.93–1.52)
RCC			
MSK-IMPACT	26/129	_	2.42 (1.10-5.33)
DFCI profile	42/80	_	1.27 (0.65-2.49)
All others tumour types			
MSK-IMPACT	119/351	_	1.67 (1.16-2.40)
		0.1 0.5 1.0 2.0 5.0 10.0	
		Favours HI A-A*03	

protective deleterious

#LearnACI © 2021–2022 Society for Immunotherapy of Cancer

Integrating across data types reveals new biology

SCLC transcriptomic signatures associate with ICI response

#LearnACI © 2021–2022 Society for Immunotherapy of Cancer

More work is needed to identify consistent genomic response correlates

#LearnACI © 2021–2022 Society for Immunotherapy of Can

sitc

Society for Immunotherapy of Cancer

Litchfield et al, Cell 2021

Larger, better annotated cohorts are needed

Simulated cohort: 40% CR/PR, 60% PD

All of the models shown need validation in external datasets!

sitc

Prevalence of mutation

- 1% CR/PR, 0.01% PD
- 5% CR/PR, 0.5% PD
- 5% CR/PR, 1% PD

• 5% CR/PR, 2% PD

10% CR/PR, 1% PD
10% CR/PR, 2% PD
10% CR/PR, 4% PD

#LearnACI © 2021–2022 Society for Immunotherapy of Cancer

Miao, Margolis, Vokes et al Nature Genetics 2018

Outline

- Existing ICI biomarkers and their role/limitations
- Landscape of novel genomic and molecular biomarkers
- Emerging challenges: treatment synergy and selecting combination therapies

Understanding the role of combination therapy and identifying features to guide patient selection

#LearnACI

- If P(B) > P(A and B)
- \Rightarrow P(A and/or B) > P(A)
- ⇒ Combination therapy can be superior to monotherapy via independent drug action [where combining A and B does not increase P(A), P(B)]

Combination, observed
 Combination, expected from independent drug action

Palmer et al, Clin Cancer Res. 2022

© 2021–2022 Society for Immunotherapy of Cancer

Society for Immunotherapy of Cancer

Sitc > Advances in Cancer Immunotherapy™

Minimal empiric evidence for long-term synergy

100-

© 2021–2022 Society for Immunotherapy of Cancer

#LearnACI

Hong et al, under review

Minimal empiric evidence for long-term synergy

#LearnACI © 2021–2022 Society for Immunotherapy of Cancer

Identifying features to help select monotherapy vs combination therapy

© 2021–2022 Society for Immunotherapy of Cancer

Society for Immunotherapy of Cancer

Conclusions

- TMB and other FDA-approved biomarkers have some but limited utility.
- Further investigations to identify new biomarkers and validate their clinical application will help advance precision immuno-oncology.
- Combination therapeutic approaches make is more challenging to disentangle the underlying biology, and careful analyses are needed to determine whether synergy or independent drug action is at play.
- Advanced computational approaches can help integrate multiple features into more sophisticated models, identify relevant biology, and ultimately may improve therapy

Mutation clonality modulates TMB response association

p-value = 0.0014

McGranahan et al, *Science* 2016 Miao, Margolis, Vokes et al *Nature Genetics* 2018

Mutational signature may also modulate TMB response association (in melanoma)

Dominant mutational signature in melanoma

Garofalo et al, Genome Med 2016 Rosenberg et al, Lancet 2016

Rizvi et al, JCO 2018

Advances in Cancer ImmunotherapyTM

TMB calculated from NGS panels associates with response

PD-L1 Ab bladder cancer sequenced via FoundationOne

PD-(L)1 Ab NSCLC sequenced via MSK-IMPACT

ctDNA-based assays – bTMB similar to tTMB

bTMB correlates with tTMB

sitc

Increasing bTMB cut-offs associate with improved outcomes

bTMB and PD-L1 are orthogonal

© 2021–2022 Society for Immunotherapy of Cancer

#LearnACI

ctDNA-based assays – response dynamics

в А P = 0.006 ctDNA increase ctDNA decrease 70% (%) 60% 62.5% in target lesior rate (10/16)50% 60% 40% 40% 30% Respor 20% 20% 0% 7.7% Change (1/13)10% -20% -40% ctDNA decrease ctDNA increase % -60% -80% -100%

© 2021–2022 Society for Immunotherapy of Cancer

#LearnACI

Goldberg et al, *Clin Cancer Research*, 2018 Ricciuti et al, *JCO suppl*, 2020

ctDNA for treatment intensification – proof of principal in locally advanced NSCLC

Minimal/negative benefit from consolidation in ctDNA negative samples #LearnACI

Modinget al, Nature Canter 2020 apy of Cancer

sitc

Society for Immunotherapy of Cancer

Consolidation ICI improves outcome in ctDNA positive samples

Pts with increased ctDNA on adjuvant ICI do as badly as those who do not receive adjuvant therapy

Genomic + transcriptomic signatures may integrate orthogonal biologies

Testing of TMB versus multivariable CPI stratifier performance in three independent test cohorts (total n=341):

Cristescu et al, Science 2018 Litchfield et al? Céll; 2021 Immunotherapy of Cancer

Society for Immunotherapy of Cancer

From biology to prediction using context sensitive, multi-modal features

Observations

- TMB did not emerge as a feature of interest in either model (genetic features minimally useful)
- Clinical features may be important but are often unavailable
- Cohorts are limited (few clinically and molecularly characterized cohorts) and more validation is needed
- Models still need to be informed by biology

Ipi-treated model applied to ipi-naïve group

© 2021–2022 Society for Immunotherapy of Cancer

#LearnAC