

SITCS SITCS

Walter E. Washington Convention Center

Cytokines in cancer: Biology and therapy

Kim Margolin, M.D., FASCO 11/8/2018 SITC, Washington D.C.

Presenter disclosure information

Kim Margolin

The following relationships exist related to this presentation:

ImaginAb, consultant Nektar, advisory board Iovance, advisory board

Organization of the talk

- Introduction to cytokine biology
 - Families of cytokines with structural and/or functional similarities
 - Cytokine-producing cells and stimulatory events
 - Target cells and mechanisms of action
 - Roles in normal physiology and inflammation
 - Functions in cancer biology and therapy
 - State of the art and future directions
- Specific cytokines used for Rx of malignancy
- Combination therapies involving cytokines

"Just because it's not a major motion picture doesn't mean it's not good. Now pay attention...

Overarching concept of cytokines

- Provide signal 3 to adaptive immune responses
 - Signal 1=TCR-MHC interaction around a peptide
 - Signal 2=costimulation through CD28:B7.1 engagement
 - Signal 3=cytokine enhancement
- Mediate important cell-cell communications in innate and adaptive immune response
- Modulate strength of inflammatory and immune responses
- Contribute to pro-tumor and anti-tumor effects in immunosurveillance

Signals 1,2,3 in the adaptive immune response

Signal 1

Signal 2

Signal 3

Type 1 and type 2 "polarized" responses—remarkable activity, but substantial plasticity

- Type 1—acute inflammation, innate → adaptive immunity
 - Antiviral
 - Anti-tumor cytotoxicity, especially CD8+ T cells
 - Associated with distinct gene expression signatures
 - Classical type 1 cytokines: IL-2, IFN-γ, TNF
- Type 2—chronic inflammation, suppressive effects, pro-tumoral
 - Physiologic limitation of type 1 responses for host protection
 - Mediators of some autoimmune, other inflammatory diseases

T-cell cytokines (interleukins) that signal through a common gamma chain (γc) receptor

Cytokine

Cytokine receptor structure

• IL-2

• IL-4

• IL-7

• IL-9

• IL-15

• IL-21

 $\alpha\beta\gamma_c$ chain (high-affinity) or $\beta\gamma_c$ (low-affinity)

IL-4 receptor*, γ_c

IL-7 α receptor, γ_c

IL-9 receptor, γ_c

IL-15 α receptor (generally cell-bound), $\beta \gamma_c$

IL-21 α receptor, $\beta \gamma_c$

T-cell cytokines (interleukins) that signal through a common gamma chain (γc) receptor

Cytokine

Producer cell

• IL-2

• IL-4

• IL-7

• IL-9

• IL-15

• IL-21

 $T_{h/c}$, DC, NK

T, NK, mast, eosinophil

Epithelial, stromal, fibroblast

 T_h

Neutrophil, monocyte, DC, mast, B, fibroblast

 T_{fh} , $T_h 17$, NKT

yc, cytokines, signaling and receptors,

Receptor expressed by:

T cells, B cells and NK cells T cells, B cells, NK cells, mast cells and basophils T cells, pre-B cells and DCs

T cells, mast cells, epithelial cells and eosinophils T cells and NK cells

T cells, B cells, NK cells and DCs

Proliferative effects of γc cytokines

- IL-2—CD4, CD8, NK, and \underline{T}_{reg}
- IL-7—naïve and memory T cells, thymocyte growth
- IL-15—NK, CD8, memory T cells, not T_{reg}
- IL-21—peripheral lymphocytes, including B cells

Detailed signaling by IL-2

Detailed intracellular signaling by IL-15

IL-9 and IL-17—helper cytokines with unique roles in inflammation and immunity

- IL-9, member of γ_c family from Th9 cells, acts on T cells but also epithelial cells, mast cells and eosinophils [allergy]
 - Some type 2 effects
 - Supports immunoglobulin production
 - Th9 cells may mediate potent and long-lived (memory) antitumor effects
- IL-17, produced by Th17 cells, mediates some inflammatory states
 - May also support antitumor cytotoxicity
 - Th17 may represent a long-lived memory subset like Th9 with implications for adoptive cell therapies of cancer

Structure and functions of IL-4 and IL-13 and their receptors

- IL-4 is considered a Th2 cytokine
- IL-13 shares the α -receptor with IL-4 and functions in a heterodimer
 - Supports differentiation of CD4 T cells into Th2
 - Suppresses Th1 cells
 - Supports multiple functions of B cell development
 - Promotes functions of mast cells and basophils

IL-4 and IL-13 and their receptors

GM-CSF—a pleotropic cytokine with immunotherapeutic potential

Myeloid Cells

- Mobilization from bone marrow
- Maturation
- Priming of Myeloid cells

Dendritic Cell

Maturation

GM-CSF

T-lymphocytes

Proliferation

iNKT cells and Alveolar Macrophage

 Steady state differentiation

and Activation Increased Cell Survival, Enhanced Proliferation, Differentiation,

Neutrophils

 Increased degranulation, reactive oxygen species (ROS), phagocytosis, and bacterial killing

Monocytes

 Increased antigen presentation via increased mHLA-DR, phagocytosis, and bacterial killing

Macrophages

- Increased cytoxicity
- Production of pro-inflammatory cytokines with stimulation

Basophils and Eosinophils

IL12—prototypical type 1 cytokine

Pedro Berraondo et al. Clin Cancer Res 2018

IL-12: powerful and pleiotropic type I cytokine

- Strong inducer of IFN-γ from NK, CD8, CD4
- Unfavorable therapeutic index when given systemically
- May be amenable to loco-regional Rx, e.g. encoded in a plasmid, with electroporation
- Other TLR agonists work in large part by inducing IL-12 from DC
- IL-10 is major counter-balance but its biology is complex
 - Blockade
 - Agonism

Both have been tested therapeutically

Current status of interferons in cancer therapy

Therapeutic outcomes of recombinant cytokines

- High-dose interleukin-2—FDA-approved for advanced melanoma, ccRCC
- Other forms of interleukin-2
- Interleukin-15
- Interleukin-7
- Interleukin-21
- GM-CSF—FDA-approved in TVEC

Interleukin-2

- High doses as single agent

 durable remissions in ~10% of patients with metastatic melanoma or advanced clear-cell renal cancer
- Capillary leak syndrome w/multiple organ toxicities universal with HDIL-2
- Superceded by immunotherapies w/ better therapeutic index
- IL-2 remains important for selected indications

Alternative interleukin-2 regimens

- Combination with CTLA4 blockade disappointing and toxic
- Combinations at various doses with PD-1 blockade ongoing
- Engineered IL-2 molecules failed in '90s but have resurfaced
 - IL-2 agonist with selective βγ receptor binding avoids Treg stimulation
 - PEGylated IL-2 with measured hydrolysis from 5 to 1-2 PEG residues per IL-2 preferentially stimulates CD8, NK>>Treg and has promise with PD-1 blockade

NKTR214 plus nivolumab for untreated advanced melanoma

Unmodified IL-15 (NCI) cytokine responses and effects on lymphocyte subsets

CD8+ T cells

NK Cells

ALT-803: IL-15:IL5Ra-Fc fusion complex

- Increased binding to IL15Ra from N72D mutation
- Serum half-live = 25 hours

CITN-06 trial

- 4 solid tumors (mel, H and N, NSCLC, RCC)
- 4 dose levels given subcutaneously qwk x 4 of 6
- No objective responders but most heavily pretreated
- DLTs mainly local injection reaction

U Mn trial

- Heme malignancies in relapse after alloHCT
- 4 dose levels given subcutaneously q wk x 4 of 6
- DLTs mainly local injection reaction
- Activity in ~20% of pts
- Expansion of NK, CD8 cells without Treg expansion

Effect of subcutaneous ALT-803 on circulating total CD3-CD56+ NK cells: By dose cohort

ALT-803 plus immunomodulatory antibodies

- Rationales
 - Abs enhance ADCC by NK cells
 - ALT-803 stimulates especially CD56^{bright} NK
 → cytotoxicity vs tumor cells
- Trial data so far
 - + Nivolumab in NSCLC, some pretreated with immune checkpoint blockade
 - + Rituximab in indolent NHL

Interleukin-21

- Studied as single agent and w/ targeted and immune-checkpoint blockade
- Main role may be in ex vivo expansion of therapeutic T cells
- Pleiotropic w/ actions on lymphoid, myeloid, epithelial cells that include proliferation, survival, differentiation and function.
- Key role in B cell → plasma cells, development of T_{follicular helper} cells, promoting functional germinal centers, Ig production.
- Induces a functional programme in CD8+ cells that leads to enhanced survival, antiviral, antitumor activity.
- Key role in development of T_h17 cells \rightarrow role in various inflammatory and autoimmune diseases [thus IL-21 inhibitors under investigation].

IL-7 increases T cells in lymph nodes, spleen& marrow as well as peripheral blood

PET-CT imaging of lymphoid organs & increased metabolic activity after rhIL-7

Increased metabolic Activity = pink Maximal = yellow

Generation of talimogene laherparepvec (TVEC)

Characteristic	Rationale
JS1 strain derived	Improved tumor cell lysis over commonly used laboratory strains
Deletion of ICP34.5	Provides tumor-selective replicationDecreases replication
Deletion of ICP47	 Prevents block to antigen presentation Results in earlier/increased US11 expression
Earlier/increased US11	Restores replication of ICP34.5-deleted HSV-1
Insertion of hGM-CSF (ICP34.5 locus)	 hGM-CSF driven off CMV promoter Enhances anti-tumor immune response Increased safety in the event of homologous recombination w/wild-type HSV-1

Local: Virally-induced tumor cell lysis

Selective viral replication in tumor tissue

TVEC's mechanisms of action

Systemic tumor-specific immune response

Tumor cells rupture for an oncolytic effect

Systemic: tumor-specific immune response

Death of distant cancer cells

Overall survival—TVEC versus GM-CSF

CI, confidence interval; HR, hazard ratio;

Median OS is 4.4 months longer in the T-VEC arm

Future of cytokines in biology and therapy

- Ex vivo support of adoptive cellular therapy strategies
- Combinations for tumor vaccine development
- Novel combinations with other immuno-oncology agents
 - Immune checkpoint blockade
 - Inhibitors of suppressive small molecules and enzymes
 - Co-stimulatory agonistic antibodies
 - Your favorite combination here

Novel cytokine-based Rxs of malignancy and inflammatory states

- Denileukin-diftitox (Ontak)
 - IL-2 fused to diphtheria toxin
 - Targets cells expressing high-affinity IL-2R α (CD25)
 - Was used in cutaneous T-cell lymphoma and some graft-vs-host disease
 - Off market
- ch14:18-IL-2
 - Looked very promising in pediatric neuroblastoma
 - Unfavorable therapeutic index, but the chimeric Ab ch14:18 (anti-GD2) approved
 - IL-2 is being added to enhance ADCC, expand effector cells

Thank you for your kind attention!

Do you have any questions?

Society for Immunotherapy of Cancer

#SITC2018