Cytokines: Interferons, Interleukins and Beyond

Sanjiv S. Agarwala, MD
Professor of Medicine, Temple University
Chief, Oncology & Hematology
St. Luke's Cancer Center
Bethlehem, PA, USA

Overview

- What is a Cytokine?
- Clinical Applications of Cytokines
 - IFN
 - Adjuvant Therapy of Melanoma
 - RCC
 - IL-2
 - Metastatic melanoma and RCC
- Beyond Cytokines

What is a Cytokine?

- The term "cytokine" is derived from a combination of two Greek words - "cyto" meaning cell and "kinos" meaning movement.
- Cytokines are proteins that at as cell signaling molecules for cell to cell communication in immune responses
- They stimulate the movement of cells towards sites of inflammation, infection and trauma.

Cytokines

- Polypeptides secreted by living cells that act non-enzymatically to regulate cellular functions
- Regulate
 - Immune function: interleukins, interferons
 - Hematopoiesis: G-CSF, GM-CSF
 - Cell proliferation and differentiation: EGF, TGF, FGF

Examples of Cytokines and Their Clinical Relevance

TABLE 1. EXAMPLES OF CYTOKINES AND THEIR CLINICAL RELEVANCE.*

Сутокіне	CELLULAR SOURCES	MAJOR ACTIVITIES	CLINICAL RELEVANCE
Interleukin-l	Macrophages	Activation of T cells and macrophages; promotion of inflammation	Implicated in the pathogenesis of septic shock, rheu- matoid arthritis, and atherosclerosis
Interleukin-2	Type 1 (Th1) helper T cells	Activation of lymphocytes, natural killer cells, and macrophages	Used to induce lymphokine-activated killer cells; used in the treatment of metastatic renal-cell carci- noma, melanoma, and various other tumors
Interleukin-4	Type 2 (Th 2) helper T cells, mast cells, basophils, and eosin ophils	Activation of lymphocytes, monocytes, and IgE class switching	As a result of its ability to stimulate IgE production, plays a part in mast-cell sensitization and thus in allergy and in defense against nematode infections
Interleukin-5	Type 2 (Th 2) helper T cells, mast cells, and eosin ophils	Differentiation of eosinophils	Monoclonal antibody against interleukin-5 used to inhibit the antigen-induced late-phase eosinophilia in animal models of allergy
Interleukin-6	Type 2 (Th 2) helper T cells and macrophages	Activation of lymphocytes; differentia- tion of B cells; stimulation of the pro- duction of acute-phase proteins	Overproduced in Castleman's disease; acts as an au- tocrine growth factor in myeloma and in mesangial proliferative glomerulonephritis
Interleukin-8	T cells and macrophages	Chemotaxis of neutrophils, basophils, and T cells	Levels are increased in diseases accompanied by neu- trophilia, making it a potentially useful marker of disease activity
Interleukin-11	Bone marrow stromal cells	Stimulation of the production of acute- phase proteins	Used to reduce chemotherapy-induced thrombocy- topenia in patients with cancer
Interleukin-12	Macrophages and B cells	Stimulation of the production of inter- feron-y by type 1 (Th1) helper T cells and by natural killer cells; induction of type 1 (Th1) helper T cells	May be useful as an adjuvant for vaccines
Tumor necrosis factor α	Macrophages, natural killer cells, T cells, B cells, and mast cells	Promotion of inflammation	Treatment with antibodies against tumor necrosis factor α beneficial in rheumatoid arthritis
Lymphotoxin (tumor ne- crosis factor B)	Type 1 (Th1) helper T cells and B cells	Promotion of inflammation	Implicated in the pathogenesis of multiple sclerosis and insulin-dependent diabetes mellitus
Transforming growth fac- tor β	T cells, macrophages, B cells, and mast cells	Immunosuppression	May be useful therapeutic agent in multiple sclerosis and myasthenia gravis
Granulocyte – macrophage colony-stim- ulating factor	T cells, macrophages, natural killer cells, and B cells	Promotion of the growth of granulo- cytes and monocytes	Used to reduce neutropenia after chemotherapy for tumors and in ganciclovir-treated patients with AIDS; used to stimulate cell production after bone marrow transplantation
Interferon-α	Virally infected cells	Induction of resistance of cells to viral infection	Used to treat AIDS-related Kaposi's sarcoma, mela- noma, chronic hepatitis B infection, and chronic hepatitis C infection
Interferon- \beta	Virally infected cells	Induction of resistance of cells to viral infection	Used to reduce the frequency and severity of relapses in multiple sclerosis
Interferon-γ	Type 1 (Th1) helper T cells and natural killer cells	Activation of macrophages; inhibition of type 2 (Th2) helper T cells	Used to enhance the killing of phagocytosed bacteria in chronic granulomatous disease

^{*}AIDS denotes acquired immunodeficiency syndrome.

Cytokines in Clinical Practice

Interferons

Interleukins

Interferons

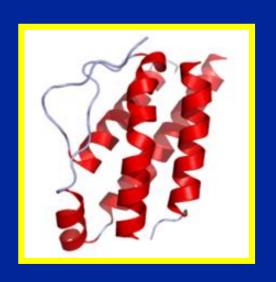
- First described in 1956 as substances that interfered with viral replication
- Are proteins with multiple biologic activities
- Immune system modulation
- Direct antitumor effects
- Antiangiogenic

Interferons

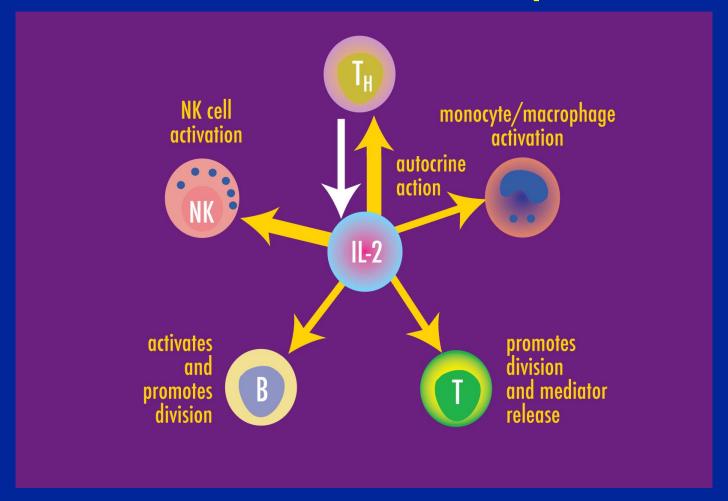
- Type I
 - $-IFN-\alpha$
 - IFN-β
 - Others: IFN-τ, IFN-ω
- Type II
 - $-IFN-\gamma$

Interferon-a

- Three main subspecies
 - IFN- α 2a
 - $-IFN-\alpha 2b$
 - $-IFN-\alpha 2c$
- Share a common receptor
- Differ minimally in amino acid sequence


 In melanoma, IFN-α2b has been most widely investigated

Interleukins


- Cytokines produces by leukocytes that have effects predominantly on other leukocytes
- Produced by lymphocytes, macrophages
- Act on T and B-cells, NK cells

What is IL-2?

- IL-2 is an immunotherapy
- Discovered in 1976 and described as a protein that stimulated growth of T cells¹
- Recombinant IL-2 first cloned in 1983¹
- Phase II clinical trials began in 1985¹

Role of IL-2 in the Immune Response

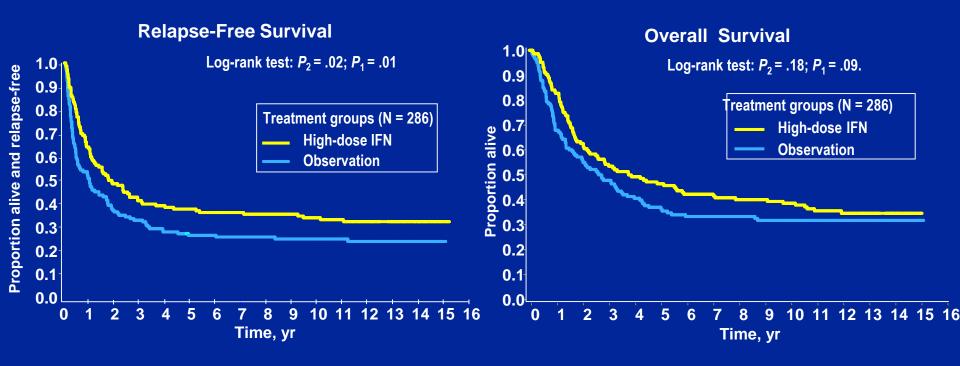
Overview

- What is a Cytokine?
- Clinical Applications of Cytokines
 - IFN
 - Adjuvant Therapy of Melanoma
 - RCC
 - IL-2
 - Metastatic melanoma and RCC
- Beyond Cytokines

High Dose Interferon Therapy

Induction:

 20 MIU/m2/dose x 4 weeks IV (Monday -Friday)


Maintenance:

 10 MIU/m2/dose x 48 weeks SQ (Every Monday, Wednesday and Friday)

Adjuvant IFN-α Regimens

Schedule	Dose	Frequency	Duration				
Low Dose							
	3 MIU	3 x weekly	18 – 24 months				
Intermediate Do	Intermediate Dose						
Induction	10 MIU	5 x weekly	4 weeks				
Maintenance	10 MIU	3 x weekly	12 -24 months				
	5 MIU	3 x weekly	24 months				
High Dose							
Induction	20 MIU/m ²	5 x weekly	4 weeks				
Maintenance	10 MIU/m ²	3 x weekly	11 months				
Short Course							
Induction X 1	20 MIU/m ²	5 x weekly	4 weeks				
Intermittent							
Induction X 3	20 MIU/m ²	20 MIU/m ²	5 x weekly for 4 weeks Q 4 months				

E1684: Updated Efficacy (ITT at 12.6 yr Median Follow-up)

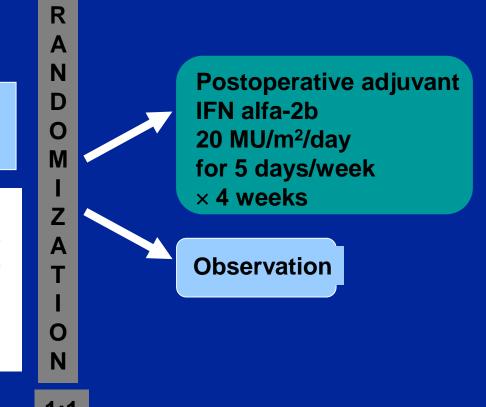
	Total		Alive or relapsed-free	Median
Observation	140	106	34	1.0
High-dose IFN	146	95	51	1.7

	Total	Dead	Alive	Median
Observation	140	95	45	2.7
High-dose IFN	146	93	53	3.8

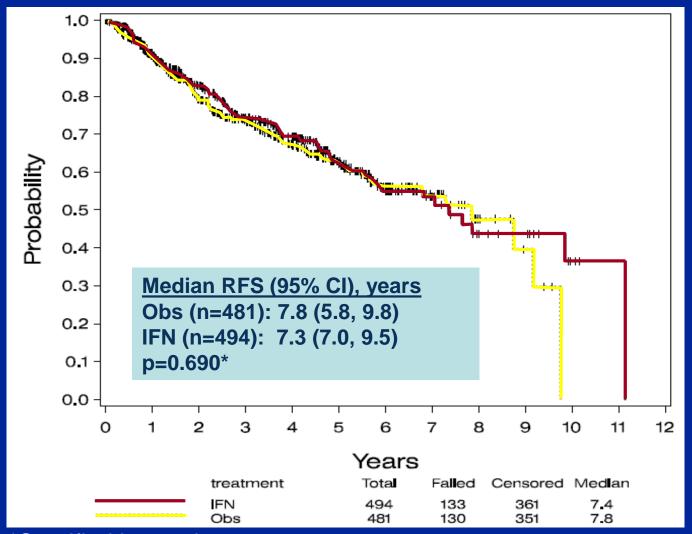
Short Duration (Induction only) vs. Prolonged Duration (PEG-IFN)

- Hypothesis that much of the benefit of HDI may be driven by the one month IV induction phase
- Other trials have suggested that longer duration of treatment with a lower dose may be beneficial
- Short duration intensive therapy vs.
- Long duration less intensive therapy

Study design: ECOG 1697


Patients with intermediateand high-risk melanoma

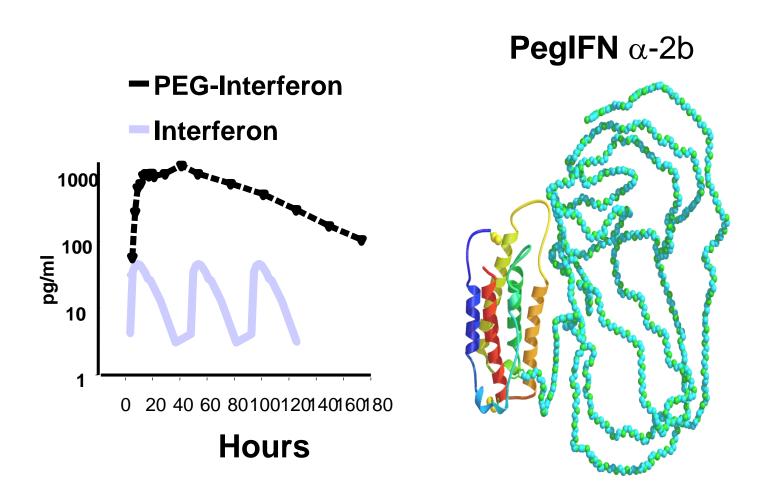
Defined as T3:


Breslow thickness >1.5 mm (AJCC 6th ed) >2.0 mm (AJCC 7th ed)

or

Any thickness with microscopically positive nodal disease (N1a–N2a)

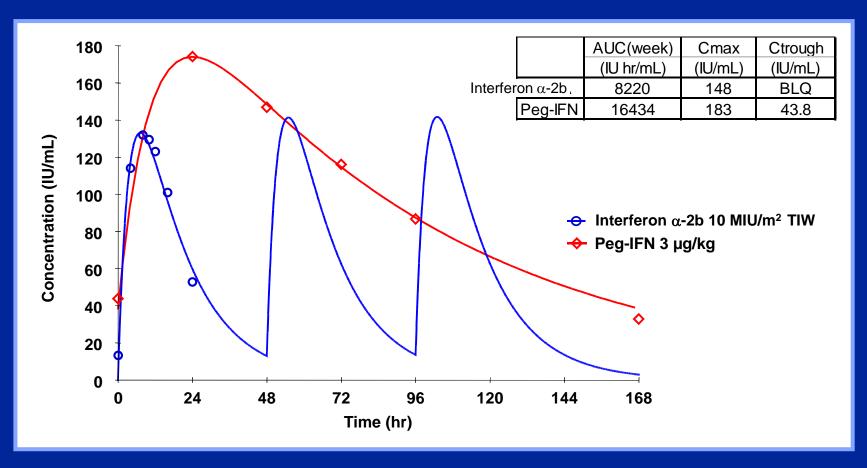
Relapse-free survival (n=975)


*Stratified log-rank test

IV Induction Alone

- Not effective by itself (without maintenance)
- If HDI is used, it must be the approved induction followed by maintenance and should not be shortened

"Does IV Induction matter at all?"


Serum Levels of Pegylated vs. Conventional Interferons

Pegylated IFN-α

Schedule	Dose	Frequency	Duration
Induction	6 μg/kg SC	Q weekly	8 weeks
Maintenance	3 μg/kg SC	Q weekly	up to 5 years

Concentration-time Profiles of IFN SC 10 MIU/m² TIW vs Peg-IFN Alfa-2b 3 µg/kg/Week in Melanoma Subjects

Peg-IFN mean concentrations at 3 μ g/kg/week Week 12 was converted to IU/mL based on the specific activity with a model fit line

Interferon α -2b mean concentrations at 2^{nd} and 3^{rd} dosing were simulated based on the pharmacokinetic model of 10 MIU/m² SC at Day 52

Design

Patients (n=1,256):

Resected TxN1-2M0 melanoma, within 7 weeks of lymphadenectomy

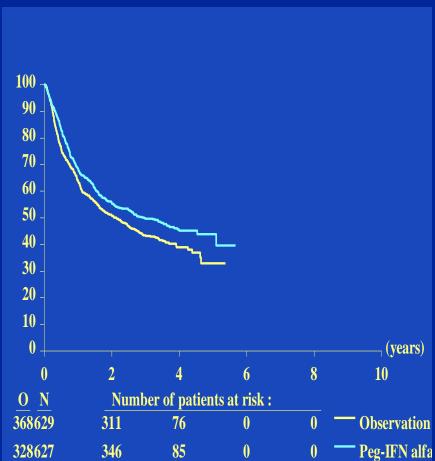
Randomization

Stratified by:

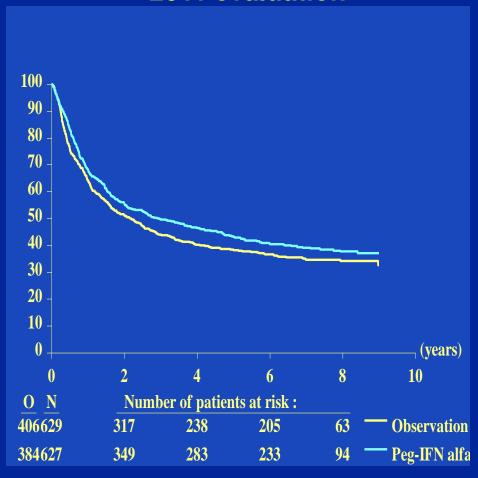
- Microscopic (N1) vs. palpable (N2)
- 1 vs. 2-4 vs. 5+ nodes
- Breslow
- Ulceration
- Gender
- Site

Observation

Peg-IFN alfa-2b


- Induction (8 weeks) 6 μg/kg/week
- Maintenance (5 years or distant metastasis) 3 µg/kg/week
- Dose reduction to 3, 2, 1 to maintain performance status

Primary Endpoints:


- Relapse-free survival (RFS)
- Distant metastasis-free survival (DMFS)

Relapse-Free Survival (ITT)

2011 evaluation

P=0.01 HR = 0.82 (95% CI 0.71, 0.96)

P=0.05 HR = 0.87 (95% CI 0.76, 1.00)

Overview

- What is a Cytokine?
- Clinical Applications of Cytokines
 - IFN
 - Adjuvant Therapy of Melanoma
 - RCC
 - IL-2
 - Metastatic melanoma and RCC
- Beyond Cytokines

IFN α Monotherapy in Advanced RCC: Cochrane Review

- Meta-analysis evaluating the use of immunotherapy in RCC
 - Primary endpoint studied: OS
 - Secondary endpoint studied: Remission
- Analysis included a total of 58 studies involving 6880 patients
 - 4 studies of interferon α in 644 patients
- Interferon α provided a reduced risk for mortality vs control therapy
 - ↓ 46% at 1 year
 - ↓ 36% at 2 years
- Concomitant therapy with a variety of agents produced no additional survival effect compared with interferon α alone

Overview

- What is a Cytokine?
- Clinical Applications of Cytokines
 - IFN
 - Adjuvant Therapy of Melanoma
 - RCC
 - IL-2
 - Metastatic melanoma and RCC
- Beyond Cytokines

High-Dose IV Bolus rIL-2 Schedule

Course of Treatment

rIL-2 600,000 IU/kg q8h by 15-min infusion

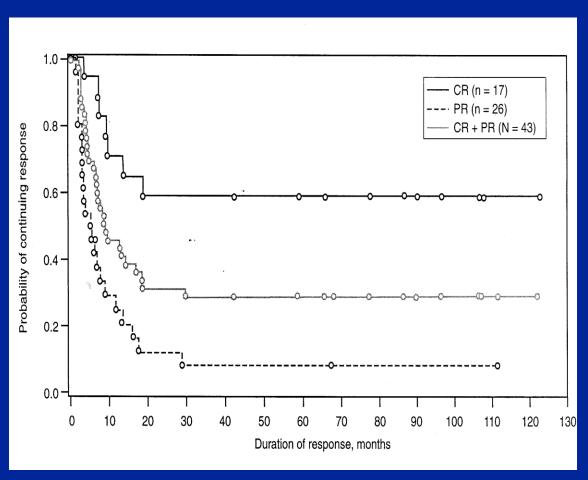
Rest

rIL-2 600,000 or 720,000 IU/kg q8h by 15-min infusion

5 days

5 to 9 days

5 days

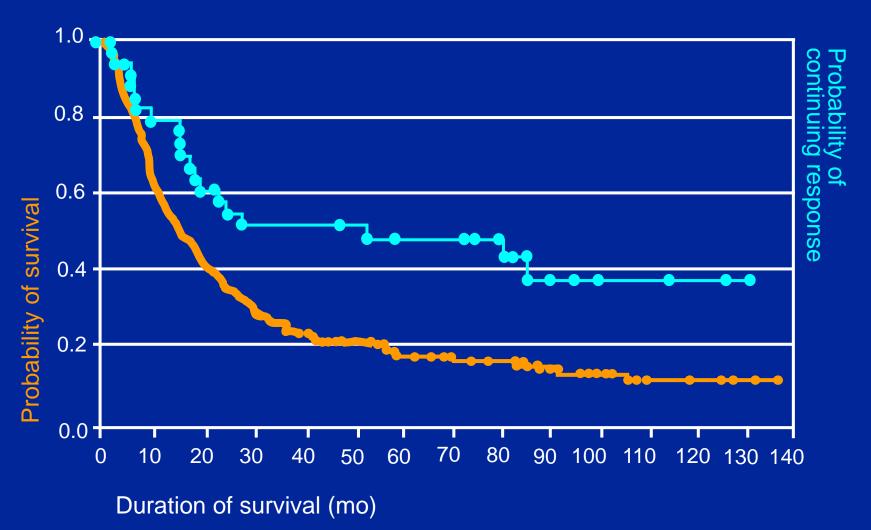

Cycle 1

Cycle 2

 Median number of doses per course: 7 per first treatment cycle

Fyfe G, et al. *J Clin Oncol.* 1995;13:688-696. Kammula US, et al. *Cancer.* 1998;83:797.

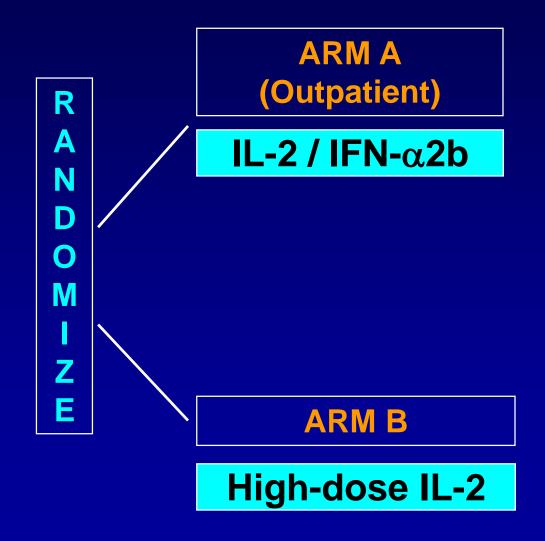
High Dose IL-2 Therapy


- RR: 16% (43 / 270)
- Durable responses6%
 - Median 8.9 mos
 - CR: not reached

Single-Agent IL-2 in RCC

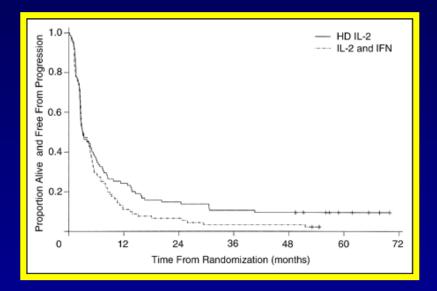
Author	N	Dose	OR	MDR	MS
Fisher ¹	255	6 or 7.2x10 ⁵ IU/kg q8h IV X 14	15% (7/8)	54 m	16.3 m
Gold ²	123	18-22 MIU/m²/day 1-5 6-8 MIU/m²/day 10-19	18.7% (7.3/11.4)	-	19 m

- 1: Median response duration for all CRs not reached, but at least 80 months (range: 7-131+ m)
- 2: 7/ 9 CRs in continuing complete response at 43 to 109 months


IL-2 Response Duration: All Responding Patients Kaplan-Meier Estimate

Phase III CWG RCC Trial Schema HD IL-2 vs LD IL-2/IFN

STRATIFY


- Bone or liver metastases
- Performance status 0–1
- Primary tumor in place

Low-Dose IL-2 Not as Effective as High-Dose IL-2 in mRCC

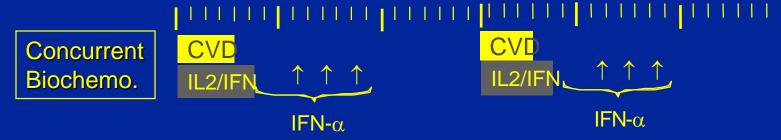
Randomized phase III trial of high-dose (HD) IL-2 vs outpatient low-dose IL-2 + interferon-alpha in patients

(N=192) with mRCC*

- Overall response rate was 23% for HD arm vs 19% for low-dose arm (*P*=.018)
- Survival was superior for patients with bone or liver metastases in the HD arm (*P*=.001)

*High-dose IL-2 (600,000 U/kg/dose intravenously every 8 hours on days 1 through 5 and 15 to 19 [maximum 28 doses])

Low-dose IL-2 (5 MIU/m² subcutaneously 3 times per week for 4 weeks) every 6 weeks.

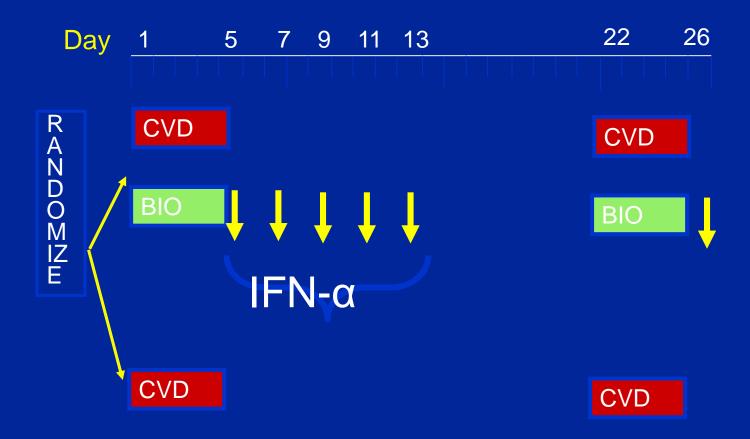

Biochemotherapy

- Combination of immunotherapy (biologic therapy) with chemotherapy
- Concept of non cross-resistance
- Sequential or concurrent
- Usually in-patient administration

 Phase II studies: RR 40-55%; long-term remissions in 9%

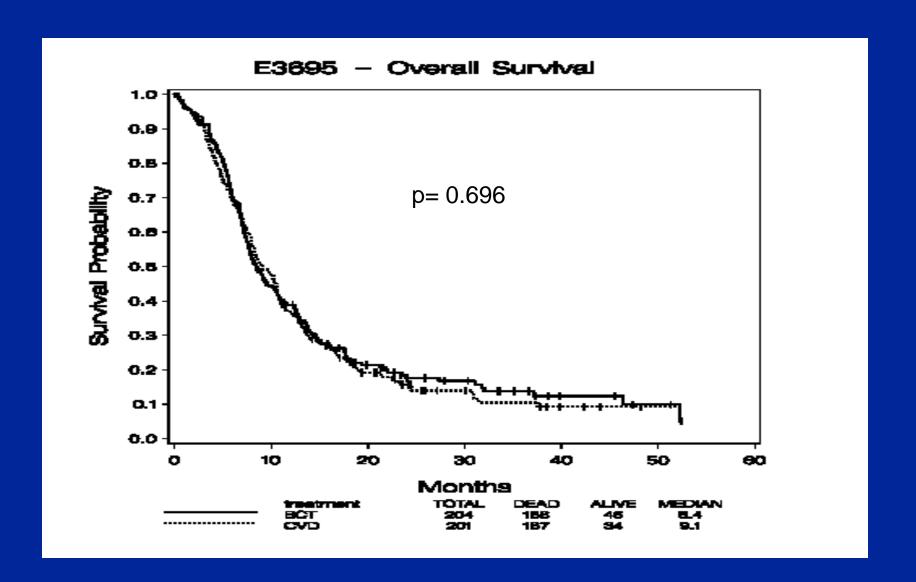
Concurrent Biochemotherapy

Regimen



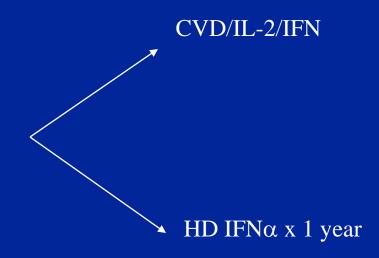
Advantages:

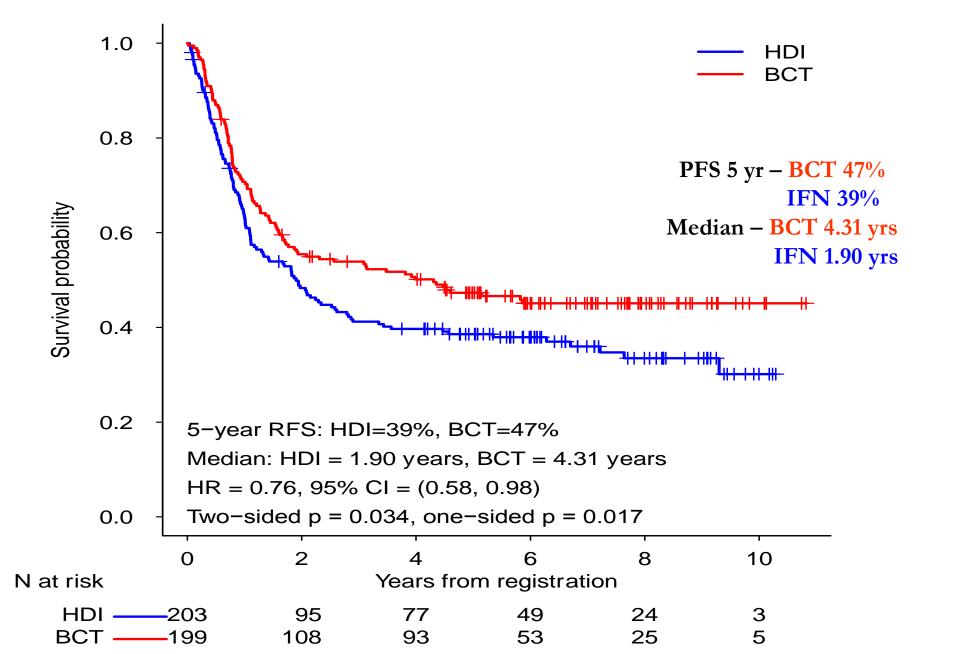
- Only 5 days of hospitalization per 21 day cycle
- No increased organ toxicity
- Similar activity


Legha et al

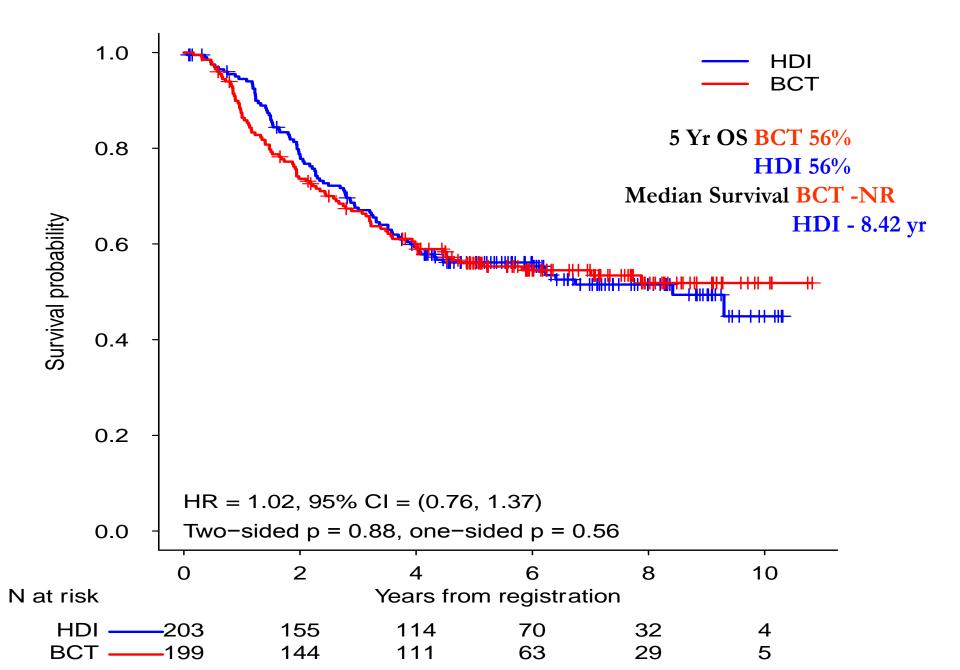
Intergroup Trial E 3695: Schema

C = cisplatin; V = vinblastine; D = DTIC; BIO = IL-2/IFN- α

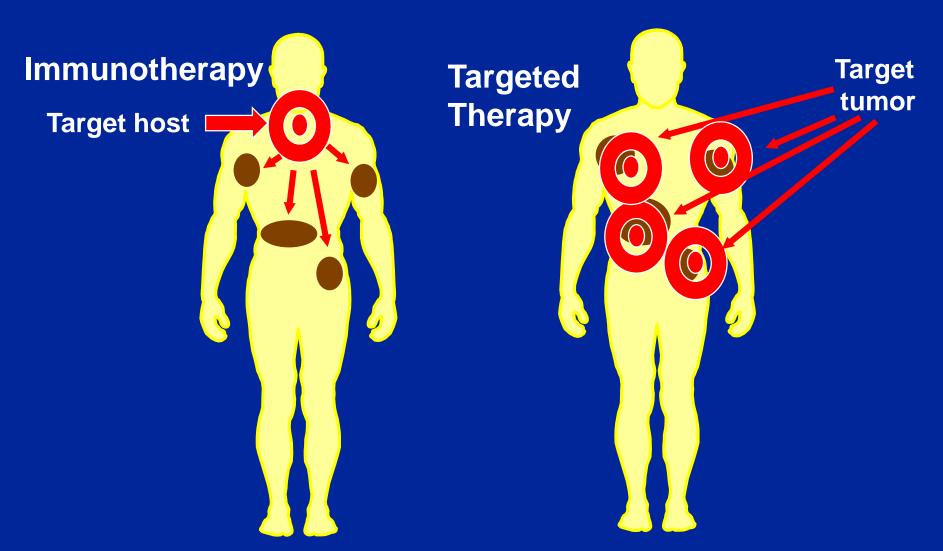

E3695: Survival Data


Testing IL-2 in Adjuvant Therapy SWOG/ECOG 0008

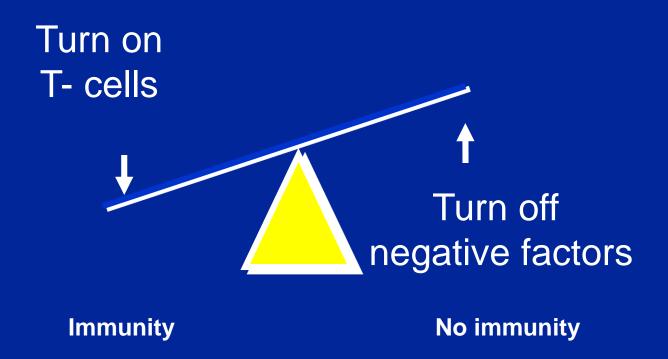
High-Risk Melanoma


 N_2, N_3

Relapse-free survival


Overall survival

Overview


- What is a Cytokine?
- Clinical Applications of Cytokines
 - IFN
 - Adjuvant Therapy of Melanoma
 - RCC
 - IL-2
 - Metastatic melanoma and RCC
- Beyond Cytokines

New Paradigm in the treatment of melanoma

Courtesy, Axel Hauschild, MD

Strategies to Tip the Balance of Immunity

Strategies to Tip the Balance of Immunity

Cytokines Vaccines CD40, CD137, OX40 mAbs Adoptive TILs, T-body, CARs CTLA-4 mAb PD-1 mAb PD-L1 mAb **IDOi** CD25 mAb Cyclophosphamide TGF-beta mAb

Summary & Conclusions

- Cytokines are proteins with an important role in the immune system
- Cytokines in clinical use include IFN and IL-2 for both melanoma and RCC
- Their clinical efficacy is limited but still significant
- We are now moving "beyond cytokines" not only in melanoma but other cancers