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Introduction: define goals
[Immunotherapy and Modulators of Apoptosis]

 Why would it work?
— Scientific rationale for combinations

 \Why it may not work
— Potential pitfalls and complications

e Data on use of combinations
— with examples.

* Next steps to advance the described
combination therapies



wWhy would it work?
Scientific rationale for combinations

Apoptosis resistance is a common cause of failure
of Immunotherapy

Selective destruction of tumor before Immune
activation

Tumor cell apoptosis may increase antigen
presentation

Cross-reactivity of kinase inhibitors on pathways of
Immune function

— Advantages of lymphodepletion

— Selective destruction of T regs

— Unexpected immune effects of kinase inhibitors

Cytokine effects on tumor and on immune cells



Why it may not work.
Potential pitfalls and complications

Pathways for induction of tumor cell death also
mediate immune cell death

— AKT/NF-KB
— Negative effects on T cells

Immune dysfunction after lymphodepletion
Proteasome inhibitors: cell death, Ag proc

Autocrine growth factors from tumor mediate escape
from cell death

Dose-related effects are complex to work out
Complexity of cross-talk, nonspecificity
Complexity of experimental trial designs



Data on use of combinations,
with examples

Apoptosis modulation Immune therapy

 Protease inhibitors . Vaccines

« TRAIL- Caspases * Cytokines

« HDAC inhibitors  Adoptive therapy

« NF-KB * Immune regulation

e AKT e Co-stimulation

. !\/IAD_K/BRAF e Antibody
Inhibition e Combination

e Cox 2 inhibition Immunotherapies



Data on use of combinations,
with examples

TRAIL, death receptors, and a role for IFN-gamma
— pediatric sarcomas (Mackall)

Effects of multikinase inhibitors on Th1/Th?2
responses and T-reg cells.

— renal cell cancer (Finke)

Sorafenib, survivin and STAT3 — antitumor and
Immunologic effects

— melanoma (Mier)

Selective T reg depletion with low-dose kinase
Inhibitors

— melanoma (Slingluff)



TRAIL, death receptors, and a role
for IFN-gamma

Crystal Mackall, NCI



TR1 orZ%

FADD

D

Caspases-8,1\OA UU@ /> @

Effector Caspases

l

Apoptosis

Member of the TNF superfamily (Wiley 1995)
— Naturally forms homotrimer and binds TR1,
TR2, TR3, TR4, and OPG
Ligation of death domain containing
receptors triggers caspase-dependent
apoptosis
Critical role for TRAIL in immune

surveillance

— TRAIL knockout mice susceptible to carcinogen induced
sarcomas (Cretney 2002)

— NK Cells utilize TRAIL for killing in vivo
Utilized by Activated Immune Effectors
— B cells are capable of making TRAIL
o CpG stimulation (kemp, 2004)
— Monos stimulated by group B strep or
IFN (Halaas, 2004)
— Neutrophils in urine of bladder CA
patients following BCG (Ludwig, 2004)
TRAIL mediated GVT effect of T cells (schmaitz

2003)
TRAIL receptor agonists have been
developed for clinical application

— Agonist mAbs and soluble synthetic TRAIL



TRAIL Kills Most IFNy Reverses TRAIL
Ewing’s Sarcoma Resistance In Vitro

Cell Lines In Vitro
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IFNy Modulates Several Components of the
TRAIL Mediated Death Pathway

Expression of Caspase 8 via Direct Effects on the Promoter - Neuroblastoma
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Ewing’s Sarcoma Xenografts Develop TRAIL
Resistance in vivo

Slowing of growth of some but

not all Xenografts

Even cells recovered from untreated

mice became resistant
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TRAIL Resistance In Explants is

Reversed by IFNy Treatment
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Metastatic Tumor
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TAKE HOME POINTS:
-Tumor resistance to immune mediated killing remains an issue

-IFNy modulates several mediators in the caspase dependent cell death
pathway

-Effective cellular immunotherapy will deposit IFNy into the tumor
microenvironment

-Immunotherapy would be predicted to enhance the efficacy of TRAIL
receptor agonists




Effects of TKIs on Th1l/Th2 Response and T-
Regulatory cells.

J. Finke PhD, B.l. Rini MD, A. Richmond, R. Suppiah MD, L. Wood
RN, P. Elson ScD, P. Shaheen MD, J. Garcia MD, R. Dreicer MD,
R.M. Bukowski MD
Divisions of Hematology/Oncology and Immunology,
Cleveland Clinic, Cleveland, OH
Walter Storkus PhD Univ. of Pittsburgh



Thl and Th2 Responses

% IFN-y cells
% IL-4 cells
Th2 Bias

(N=22)

CD4+ cells (medians)

Day1l Day28 Absolute Change! p-Value?

1.7% 9.4% 5.9 .001
8.6% 4.5% -1.1 .39
4.69 0.83 -4.46 <.001

1 Day 28 minus Day 1

2 p-values are from Wilcoxon signed rank test

3 Proportion of cells producing IL-4 divided by the proportion of cells
producing IFN-y; values >0 imply a Th2 (IL-4) bias and values <0 imply a
Thl (IFN-y) bias.



Treg - Medians (n=23)

Day 1 Day 28 Absolute Change! p-Values?

CD3+/CD4+/CD25hi+ 3.7% 3.7% -0.1 0.81
As % of PBMC

% of CD3+/CD4+/CD25hi+ 78.7% 48.5% -22.4 <.001
That are FoxP3+

1 Day 28 minus Day 1
2 p-values are from Wilcoxon signed rank test



FoxP3 Expression in Tregs after
Sunitinib in mRCC Patients
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Combination Therapy in Metastatic RCC

Phase I/ll Trial

DC/EGF-R peptides plus anti-EGF-R mAb ( IMC-255)

Sutent

Trial of Type-1 Polarized DC in Patients with mRCC.

MAGE-6, EphA2 and G250 peptides
Sutent



Sorafenib, survivin and STAT3 —
antitumor and immunologic effects

James Mier - BIDMC



Sorafenib induces the nuclear translocation of AIF
In A2058 Melanoma Cells
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Sorafenib induces the nuclear translocation of AIF
In A2058 Melanoma Cells
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Sorafenib inhibits the activation of STAT 3

A375
Untreated Sorafenib PD 98059 U0126
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Selective T reg depletion with low-
dose kinase inhibitors
melanoma

Kerrington Molhoek
David Brautigan
Craig Slingluff



Survival and Proliferation signaling
pathways in cancer and in lymphocytes
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Inhibition Synergistic inhibition of ERK

of serum-stimulated proliferation ~ phosphorylation
of human melanoma cells In human melanoma cells
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Combination Therapy for Melanoma — Immunologic Impact
Rapamycin (mTOR inhibition) & Sorafenib (B-Raf inhibition)
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Future Directions:
Combination Therapy —
low-dose sorafenib or rapamycin prior to vaccine

Low-dose
sorafenib or
rapamycin

Melanoma Regulatory CD8+
proliferation T-cells CD4+

‘ Lymphopenia

Vaccinate

{

Immune

response
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Discussion

Next steps to advance the described
combination therapies

Flexible trial designs re: timing and doses
Rapid translation to clinical trials

Proof of principle with small trials of
specific combinations

Monitoring biologic effect. Need for
clinical trials with tumor collection









Serum-stimulated upregulation of Inhibition

mTOR and MAPK in melanoma cells: of serum-stimulated proliferation
Phosphorylation of 4EBP1 and ERK of human melanoma cells
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