

Immunotherapy for the Treatment of Head and Neck Cancer

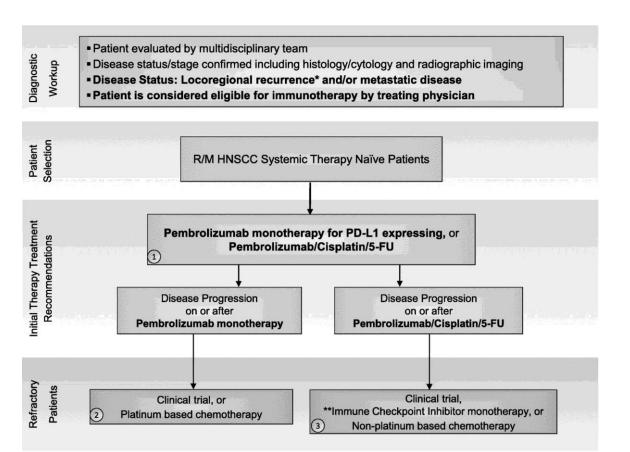
Malini Patel, MD
Assistant Professor
Rutgers Cancer Institute of New Jersey

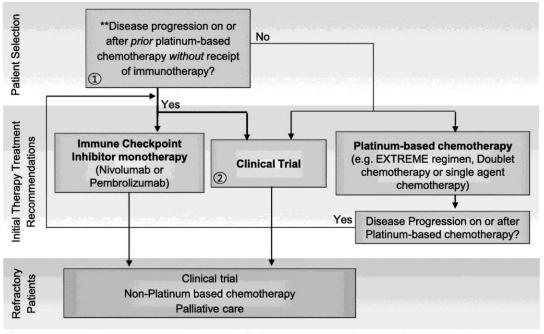
Disclosures

- Consulting Fees: Bayer
- I will not be discussing non-FDA approved indications during my presentation.

Outline

- Approved immunotherapies in head and neck cancers
- Biomarkers and immunotherapy responsiveness
- Unique considerations for head and neck cancers
- Future directions




Immunotherapy in head and neck cancer treatment

^{*}Locoregional recurrence without salvage surgical or radiation option or declines local therapies

Diagnostic Workup

- Patient evaluated by multidisciplinary team and is eligible for immunotherapy
- Disease status/stage confirmed including histology/cytology and radiographic imaging
- Disease Status: Locoregional recurrence* and/or metastatic disease
- Patient is considered eligible for immunotherapy by treating physician

^{*}Locoregional recurrence without salvage surgical or radiation option or declines local therapies

^{**}Disease Progression on or after Platinum-Based Therapy: Disease progression on or after platinum-based therapy including within 6 months of platinum-based CRT given in the locally advanced setting. Patients that receive but cannot tolerate platinum-based chemotherapy would also be included in this category.

HNSCC: head and neck squamous cell carcinoma

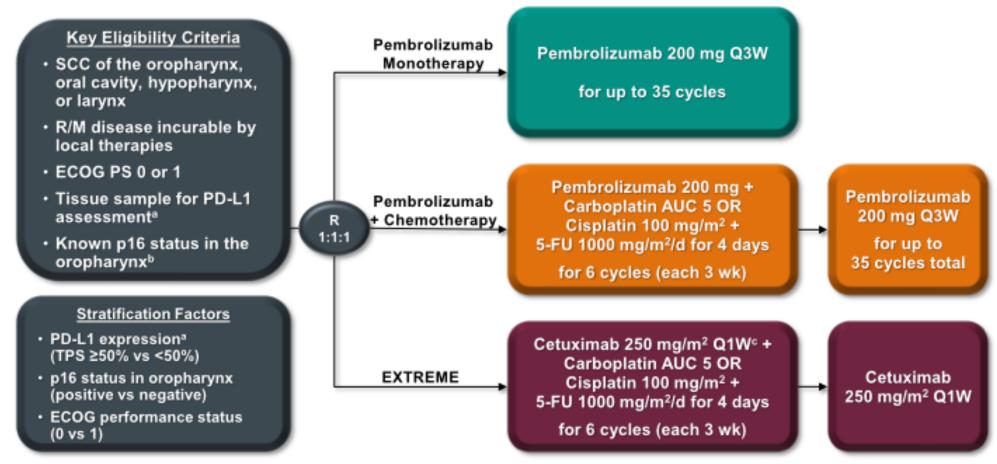
^{**}Refer to Figure 2. Initial Therapy Treatment Recommendations: Immune Checkpoint Inhibitor monotherapy (nivolumab or pembrolizumab)

Approved checkpoint inhibitors in head and neck cancers

Drug	Approved	Indication	Dose	
Pembrolizumab	2016	Recurrent/metastatic HNSCC, progression on/after chemotherapy	200 mg Q3W or 400 mg Q6W	
Nivolumab	2016	Recurrent/metastatic HNSCC, progression on/after chemotherapy	240 mg Q2W or 480 mg Q4W	
Pembrolizumab + platinum + fluorouracil	2019	Recurrent/metastatic HNSCC 1st line – all patients	200 mg Q3W or 400 mg Q6W	
Pembrolizumab	2019	Recurrent/metastatic HNSCC 1 st line – PD-L1 CPS ≥ 1	200 mg Q3W or 400 mg Q6W	

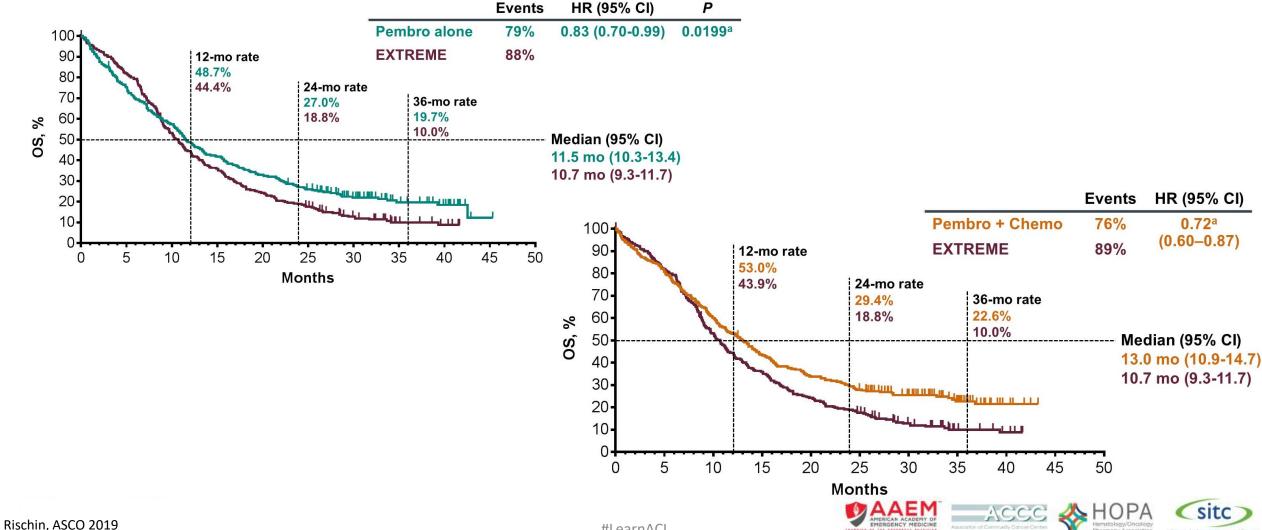
Clinical trials in HNSCC

Trial	Patient selection criteria	Treatment arm(s)	N	ORR	Median PFS (months)	Median OS (months)
KEYNOTE-048	Untreated R/M HNSCC (total population)	Pembrolizumab	301	16.9%	2.3	11.5
		Pembrolizumab + chemo (platinum/5FU)	281	36.0%	4.9	13.0
		Cetuximab + chemo	300	36.0%	5.1	10.7
KEYNOTE-012	R/M HNSCC	Pembrolizumab	192	18% (PD-L1+: 21%, PD-L1-: 6%)	2.1	8
CheckMate 141	R/M HNSCC with progression on platinum	Nivolumab	240	13.1% (PD-L1+: 17.7%, PD-L1-: 11.8%)	2.0	7.7
		Investigator's choice	121	5.8%	2.3	5.1
KEYNOTE-040	R/M HNSCC with progression on platinum	Pembrolizumab	247	14.6%	2.1	8.4
		Investigator's choice	248	10.1%	2.3	6.9



KEYNOTE-048: Pembrolizumab +/Chemotherapy in newly diagnosed R/M HNSCC

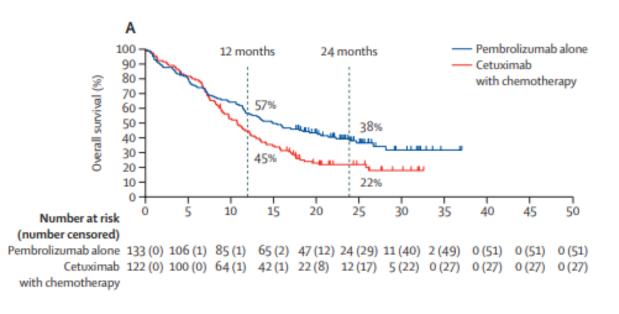
"Assessed using the PD-L1 IHC 22C3 pharmDx assay (Agilent). TPS = tumor proportion score = % of tumor cells with membranous PD-L1 expression. "Assessed using the CINtec p16 Histology assay (Ventana); cutpoint for positivity = 70%. "Following a loading dose of 400 mg/m².

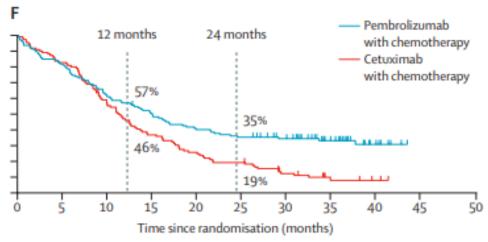


KEYNOTE-048: Overall survival in the total population

© 2020-2021 Society for Immunotherapy of Cancer

#LearnACI





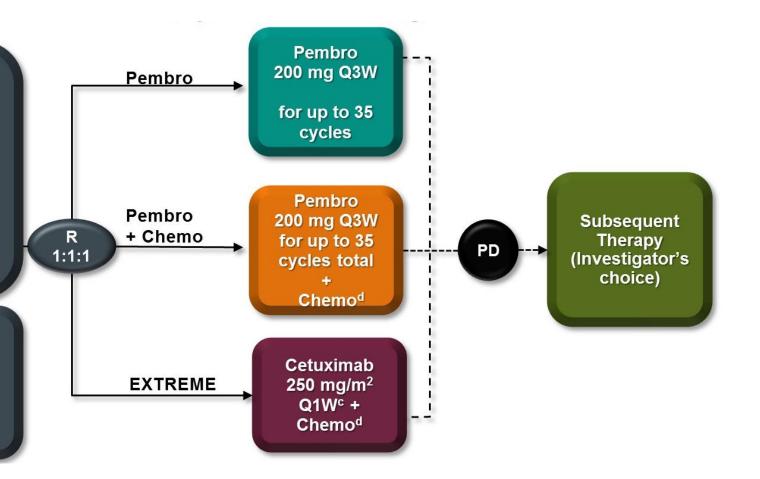
KEYNOTE-048: Overall survival in the PD-L1 positive population

PD-L1 CPS ≥1

PD-L1 CPS ≥1

126 (0) 102 (0) 77 (0) 60 (1) 50 (1) 44 (1) 36 (8) 21 (22) 4 (38) 0 (42) 0 (42)

110 (0) 91 (0) 60 (1) 40 (1) 26 (1) 19 (2) 11 (4) 4 (8) 1 (11) 0 (12) 0 (12)

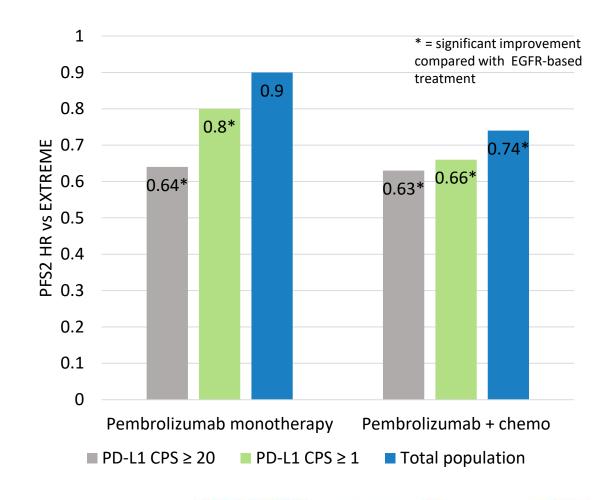

KEYNOTE-048: Outcomes on subsequent therapy

Key Eligibility Criteria

- SCC of the oropharynx, oral cavity, hypopharynx, or larynx
- R/M disease incurable by local therapies
- ECOG PS 0 or 1
- Tissue sample for PD-L1 assessment^a
- Known p16 status in the oropharynx^b

Stratification Factors

- PD-L1 expression^a (TPS ≥50% vs <50%)
- p16 status in oropharynx (positive vs negative)
- ECOG performance status (0 vs 1)

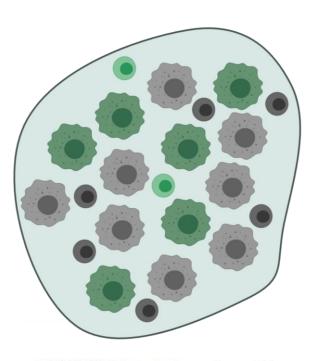


KEYNOTE-048: Outcomes on subsequent therapy

- After progression, most common next treatment was a chemotherapy regimen
- PFS2: Progression-free survival on second treatment (after progression on KEYNOTE-048 treatment)
- Benefits seen for patients who received pembrolizumab regimens up-front
- Provides support to use of immunotherapy in front-line setting

Outline

- Approved immunotherapies in head and neck cancers
- Biomarkers and immunotherapy responsiveness
- Unique considerations for head and neck cancers
- Future directions



PD-L1: TPS vs CPS

$$TPS = \frac{\text{\# of PD-L1 positive tumor cells}}{number of viable tumor cells} \times 100$$

$$CPS = \frac{\# \ of \ PD-L1 \ positive \ cells \ (tumor \ cells, lymphocytes, macrophages)}{total \ number \ of \ tumor \ and \ immune \ cells} \times 100$$

- PD-L1-positive immune cell
- PD-L1-negative immune cell
- PD-L1-positive tumor cell
- PD-L1-negative tumor cell

$$TPS = \frac{6 \text{ positive tumor cells}}{14 \text{ total tumor cells}} \times 100 = 43$$

$$CPS = \frac{6 \text{ positive tumor cells+2 positive immune cells}}{22 \text{ total cells}} \times 100 = 36$$

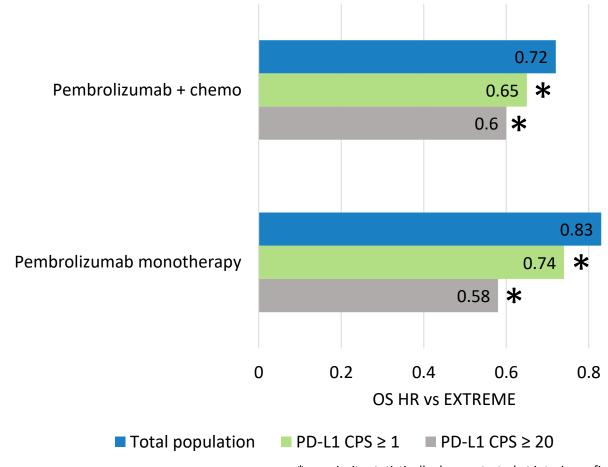
Impact of PD-L1 in HNSCC

PD-L1 CPS

- KEYNOTE-048
 - First-line treatment
 - Approval of pembrolizumab monotherapy: CPS > 1
- KEYNOTE-040
 - After platinum
 - Improved outcomes in PD-L1positive patients (by CPS ≥ 1), no significance in total population

PD-L1 TPS

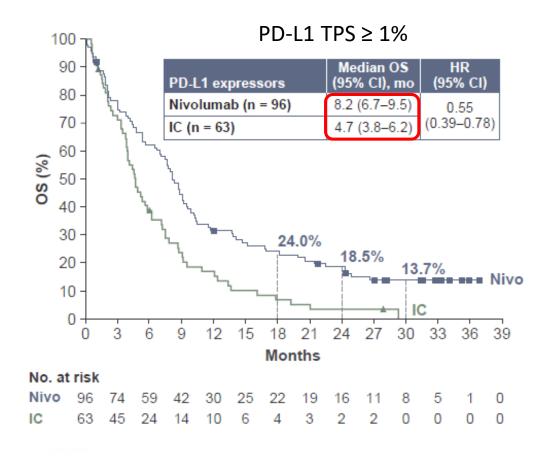
- CheckMate 141
 - After platinum
 - Greatest benefit seen for PD-L1positive tumors (TPS > 1%), but benefit regardless
- KEYNOTE-012
 - Second-line treatment
 - Higher response rate with PD-L1 CPS-positive tumors
 - No difference for PD-L1-positive tumors by TPS

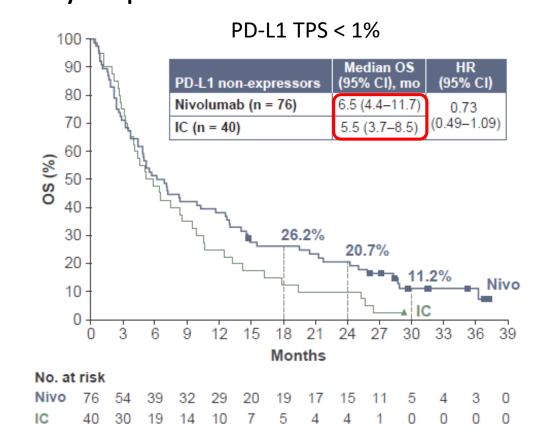


KEYNOTE-048: Outcomes by PD-L1 status

- Greatest benefits seen in tumors with highest PD-L1 expression
- Approval requires PD-L1 expression (CPS) only for monotherapy
- For total population, only pembrolizumab + chemotherapy should be considered, not monotherapy

*superiority statistically demonstrated at interim or final analysis



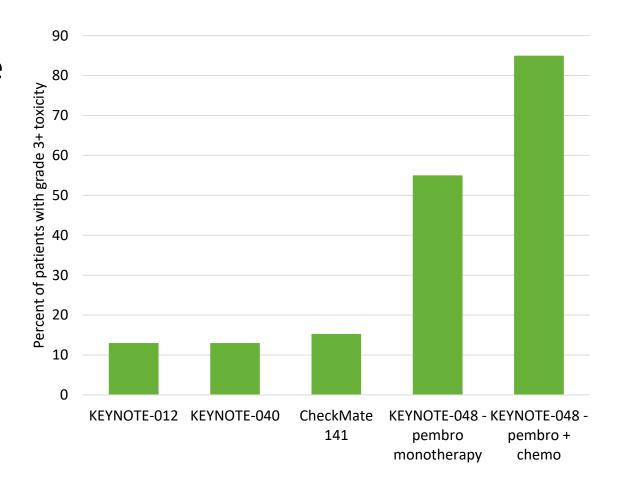


CheckMate 141: Outcomes by PD-L1 status

CheckMate 141: 2 year update

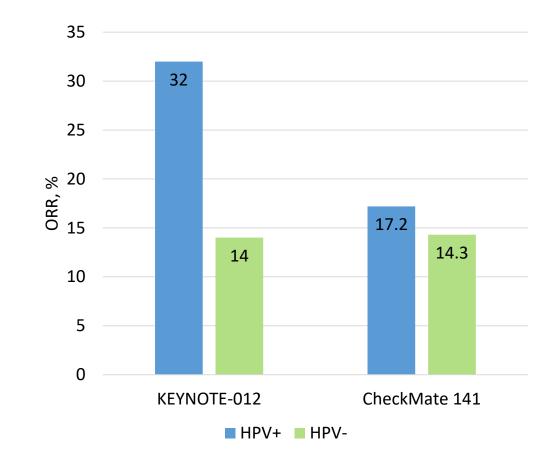
Outline

- Approved immunotherapies in head and neck cancers
- Biomarkers and immunotherapy responsiveness
- Unique considerations for head and neck cancers
- Future directions



Toxicities in head and neck cancer patients

- Patients typically receive aggressive radiation treatment, with accompanying side effects
- Radiation in combination with chemotherapy, immunotherapy and/or surgery can further complicate toxicity profiles
- While combinations may have higher response rates, also have higher toxicity rates



Viral infections in HNSCC

- Virally-associated cancers are biologically and clinically distinct
 - Human papillomavirus associated with oropharynx cancer
 - Epstein Barr virus associated with nasopharyngeal cancer
- Evidence that HPV+ tumors may perform better, but there is benefit with immunotherapy regardless of HPV status

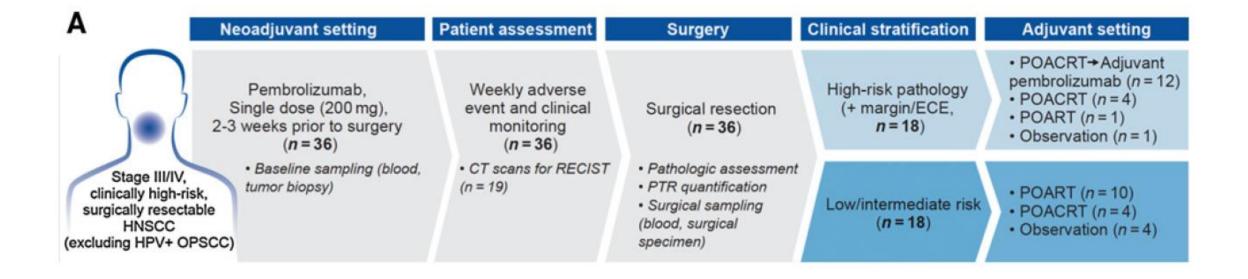
Combination immune checkpoint inhibition in HNSCC – *limited success to date*

1	Trial	Patient population	Treatment arms	ORR	Median OS (months)	Landmark OS
EAGLE	R/M HNSCC after platinum	Durvalumab	17.9%	7.6	24-months: 18.4%	
		Durvalumab + tremelimumab	18.2%	6.5	24-months: 13.3%	
		SoC	17.3%	8.3	24-months: 10.3%	

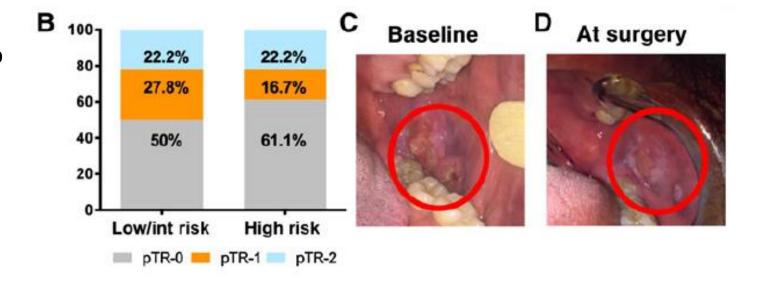
Trial	Patient population	Treatment arms	Expected study completion	
KESTREL	Untreated HNSCC	Durvalumab	February 2021	
		Durvalumab + tremelimumab		
		SoC		
CheckMate 714	Platinum-refractory HNSCC	Nivolumab + ipilimumab	January 2024	
		Nivolumab		
CheckMate 651	Untreated HNSCC	Nivolumab + ipiliumumab	February 2026	
		EXTREME regimen		

Outline

- Approved immunotherapies in head and neck cancers
- Biomarkers and immunotherapy responsiveness
- Unique considerations for head and neck cancers
- Future directions



In development: Oral cavity cancer



In development: Oral cavity cancer

- No serious AEs or unexpected surgical complications/delays
- pTR-2: 22%
- pTR-1: 22%
- 1-year relapse rate: 16.7%

In development: Checkpoint inhibitors + radiotherapy as primary therapy

- NCT03247712: neoadjuvant nivolumab + SBRT
 - Phase I
 - Decreased tumor size prior to surgery; high pathologic CR rate
- KEYNOTE-412: pembrolizumab + chemoradiation
 - Phase III
 - Safety confirmed, estimated completion 2021
- JAVELIN Head and Neck 100: avelumab + chemoradiation
 - Phase III trial terminated in early 2020, due to likelihood of limited efficacy
- REACH: avelumab + cetuximab + radiotherapy
 - Phase III
 - Safety confirmed, estimated completion 2027

In development: cetuximab + pembrolizumab for recurrent metastatic disease

- Cetuximab and pembrolizumab are both approved as monotherapies for HNSCC
- Phase II trial testing cetuximab + pembrolizumab:
 - Platinum refractory or ineligible disease
 - ORR: 45%
 - Median OS: 18.4 months
 - Safety profile consistent with individual drugs

In development: Selected ongoing combination trials

Trial	Patient population	Treatment arms	Targets	Expected study completion	
LEAP-010	Untreated recurrent/ metastatic PD-L1+ HNSCC (CPS ≥ 1)	Pembrolizumab + lenvatinib	PD-1 + multikinase inhibitor	April 2024	
		Pembrolizumab	PD-1		
INDUCE-3	Untreated recurrent/ metastatic PD-L1+ HNSCC (CPS ≥ 1)	Pembrolizumab + GSK609	PD-1 + ICOS	July 2023 (halted in mid April 2021)	
		Pembrolizumab	PD-1		
NCT02643550	HNSCC after 1-2 therapies, including progression on Pt	Monalizumab + cetuximab	NKG2A + EGFR	Phase 1/2: 2021 Phase 3: planned	

Conclusions

- Cytotoxic chemotherapy achieves limited survival in HNSCC with unfavorable side effects.
- Checkpoint inhibitors that target the PD-1 axis, nivolumab and pembrolizumab, are approved in platinum-refractory/exposed recurrent/metastatic HNSCC.
- Nivolumab and pembrolizumab are in general better tolerated than cytotoxic chemotherapy.
- Ongoing areas of research include combinations of immunotherapy with radiation and/or other drugs and development of predictive biomarkers.

Resources

Cohen et al. Journal for ImmunoTherapy of Cancer https://doi.org/10.1186/s40425-019-0662-5 (2019) 7:184

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of squamous cell carcinoma of the head and neck (HNSCC)

Ezra E. W. Cohen¹, R. Bryan Bell², Carlo B. Bifulco², Barbara Burtness³, Maura L. Gillison⁴, Kevin J. Harrington⁵, Quynh-Thu Le⁶, Nancy Y. Lee⁷, Rom Leidner², Rebecca L. Lewis⁸, Lisa Licitra⁹, Hisham Mehanna¹⁰, Loren K. Mell¹, Adam Raben¹¹, Andrew G. Sikora¹², Ravindra Uppaluri¹³, Fernanda Whitworth¹⁴, Dan P. Zandberg⁸ and Robert L. Ferris^{8*}

Case Studies

- A 64 year old male with HTN, HLD, OSA was diagnosed with R sided buccal squamous cell carcinoma. He underwent a composite resection, right segmental mandibulectomy and bilateral neck dissection, with final pathology demonstrating close margins and ENE. He underwent postoperative chemoradiation with cisplatin. Shortly after, he was noted to have biopsy proven R. neck recurrence as well as multiple soft tissue nodules. PDL1 status was 70%. What are possible therapy options?
 - (A): platinum / 5FU / cetuximab (EXTREME)
 - (B): pembrolizumab + platinum/5FU
 - (C): pembrolizumab or nivolumab monotherapy
 - (D): choice B and C

Answer: D

• Either monotherapy with checkpoint inhibitor with either nivolumab or pembrolizumab is appropriate for this patient who progressed within 6months of platinum based therapy. (CHECKMATE141/KEYNOTE040). It is notable that these therapies could be considered regardless of PDL1 status, however those with PDL1 expression have a greater magnitude of benefit. Additionally, if our patient had more symptomatic disease requiring a quicker response, could consider chemoimmunotherapy (choice B) per KEYNOTE 048, noting higher ORR in the combination arm.

Due to deteriorating performance status, it was felt that he would not tolerate combination chemoimmunotherapy. He initiated single agent pembrolizumab with quick resolution of his subcutaneous nodules within 2 cycles. He has received 21 cycles to date with near CR. How long would you continue therapy?

(A): to best response

(B): 1 year

(C): 2 years

(D): until disease progression or unacceptable toxicity

(E): choice C and D

Answer: E

• As with any systemic therapy, treatment must halt in the presence of clear progression of toxicity (choice E). Note that pseudoprogression has been reported to be quite rare in HNSCC compared to other malignancies, so critical to act on clinical deterioration/symptomatic progression. Though, the optimal duration of checkpoint inhibitor use is unknown in most malignancies, the consensus is to treat for at least two years if continued response. Note KEYNOTE 048 treated with up to 2 years of maintenance pembrolizumab.

