

Prioritizing Combination Immunotherapies and Combination Immune/Targeted Therapies: So Many Choices!

Patrick Hwu, MD
Professor and Chairman
Department of Melanoma Medical Oncology
Co-Director Center for Cancer Immunology

MDAnderson Cancer Center

Making Cancer History*

SITC, NIH Campus, April 2013

The Immune Response Against Cancer is Complex

Schreibelt G. et al. Cancer Immunol Immunother (2010) 59:1573-1582

Progression Free Survival in Melanoma Patients Treated with IL-2 vs Vaccine/IL-2

Responses Following Vaccination with Resiquimod

Baseline

After vaccination, Resiquimod

Systemic Anti-tumor Activity after Local Treatment with 3M-052

3M-052 (TLR7/8)

3M-052-based Combination Therapy

3M-052 + mutBRAF inh.

The Goal: Increase the Tail of the Curve

The Goal: Increase the Tail of the Curve

The Goal: Increase the Tail of the Curve

There is Great Potential for Targeted and Immune Therapy Combinations: However, there are too many possibilities.

Promisi	ng			
Targeted Agents		Immune Agents Treatment Schedule		
BRAFi		anti-PD-1	Targeted then Immune Rx	
MEKi		anti-CTLA4		
cKITi		anti-PDL1		
CDK4i		anti-OX40	Immune then Targeted Rx	
PI3Ki		anti-CD40		
AKTi		IL-2		
mTORi		IFN	Targeted and Immune Rx	
ERKi		T-cells	together at same time	
IGF1i		IL-21		
EGFi		Vaccines		
		TLR Agonists		
1	LO X	11	χ 3	
		_		

330 trials X \$3-million/trial = ~\$1-billion

Solution: "De-Risk" Clinical Trials with Focused Modeling

- In Vitro Models
- Mouse In Vivo Models
- Clinical Trial Monitoring

Goal is to Determine...

...Optimal Combination(s) of Agents

... Optimal Schedules

...the Effects of Targeted Agents on the Immune Response

T-cells and Tumors Share Common Signaling Pathways

Solution: "De-Risk" Clinical Trials with Focused Modeling

- In Vitro Models
- Mouse In Vivo Models
- Clinical Trial Monitoring

Mechanisms of T-cell Mediated Cytotoxicity: Active caspase-3 based Assay

Screen for Candidates to Combine with Immunotherapy

Treatment

- Treat 50,000 melanoma tumor cells with a chemical compound at a concentration of 1µM for 24 hours at 37°C.
- Treat tumor reactive TILs (Tumor infiltrating lymphocytes) with a chemical compound at a concentration of 1µM for 24 hours at 37°C.

T-cell cytotoxicity assay

- At 24 hours, wash 1X and add tumor reactive TILs at a ratio of 3:1 (TIL:Tumor) to <u>treated tumor cells</u> and incubate for 3 hours at 37°C.
- At 24 hours, wash 1X and add tumor reactive <u>treated TILs</u> at a ratio of 3:1 (TIL:Tumor) to tumor cells and incubate for 3 hours at 37°C.

Staining with anti–Active Caspase Antibody

- Perform intracellular staining with anti-Active Caspase 3 Antibody
- Run FACS in a 96 well, high throughput fashion

Screen for Candidates to Combine with Immunotherapy

~ 850 bioactive compounds from Selleckchem

Screen for Candidates to Combine with Immunotherapy

Melanoma tumor line 2549
BRAF, NRAS, c-Kit Wildtype
Undergoing exome analysis

[%Caspase+ Tumor cells]_{Drug+Tcells}
(Apoptosis mediated by presence of Drug and T cell cytotoxicity)

Drugs Plate 10: representative plate

Treatment of Tumor with Compounds

Treatment of TILs with Compounds

Not Toxic to T-cells

Toxic to T-cells

Top 20: Combination of Melanoma Exposure and TIL Exposure Comboscores

- WAY-600
- Cinacalcet hydrochloride
- VX-680
- U0126-EtOH
- Sunitinib Malate
- Rivaroxaban (Xarelto)
- RAF265
- PD0325901
- Irinotecan HCI Trihydrate (Campto)
- CI-1040 (PD184352)
- Capecitabine (Xeloda)
- Bumetanide
- BMS-708163
- Bleomycin sulfate
- AZD6244 (Selumetinib)
- Amuvatinib
- AMG900
- ADX-47273
- Abiraterone Acetate (CB7630)
- 17-AAG

Compounds at concentration tested are immunosparing and have high synergistic potential

Murine Melanoma Models

- Transplantation models
 - Xenograft models
 - Syngeneic models
- Genetically engineered mouse model (GEM)

Xenograft Model

Advantage

- Ease of implantation and performance of therapeutic studies
- Rapidity of results
- Can be used to study targeted therapy

Drawback

- Requires immune-deficient mice
- Cannot fully replicate the interaction between tumor cells and host stromal cells

T-cells Can Recognize Intracellular Peptides Presented by MHC Molecules

Antigen/MHC Modified Xenograft Model

Advantage

Provides a useful platform to evaluate the interactions between targeted agents and T-cell mediated immune response

Drawback

Cannot replicate the interaction between tumor-reactive T-cells and other immune effector cells

Combination of PLX4720 with Adoptive T-cell Therapy Leads to Enhanced Anti-tumor Activity (B6 nude mice)

Administration of PLX4720 Increases Tumor Infiltration of Adoptively Transferred pmel-1 T-cells in vivo

Increased T-cell Infiltration May be Mediated by Inhibition of VEGF Production from Melanoma Cells Treated with PLX4720

Liu C...Hwu P. Clin Cancer Res 19:393-403, 2013

BRAF Inhibition Downregulates VEGF at the Tumor Site in Melanoma Patients

Liu C...Hwu P. Clin Cancer Res 19:393-403, 2013

Combining BRAF(V600E) Inhibition and Immunotherapy

Syngeneic Model

Advantage

- Useful for experiments that study immune responses to melanoma which require an intact immune system
- Useful to evaluate the therapeutic efficacy of targeted therapy

Drawback

- Unclear mutation status of most tumor cell lines
- Lack of information regarding the alterations that drive tumor formation and progression

Examples of murine tumor cell lines

Name	Tumor type	MHC class I	Tumor Antigen	Mutation	PD-L1
BP	Melanoma	low	no gp100(with overexprssion cell line)	Pten -/-; Braf V600E	+
MC38	Colon Cancer	High	no gp100(with overexprssion cell line)	Unknown	+
B16	Melanoma	-	Express gp100	Unknown	+

Mutation Rates for Human Cancers and 2 Methylcholanthrene-induced Sarcomas

Immunogenic Mutated Peptides in B16 Melanoma

Castel JC, et al Cancer Res 72:1081-1091, 2012

pAKT Expression in Murine and Human Melanomas

Combination of Trametinib and CpG+ a OX40 has a Synergistic Therapeutic Effect on B16/OVA

Trametinib: 2mg/kg/day or 5mg/kg/day

CpG:50ug/day

aOX40: 200ug/day

The Therapeutic Effect of Dasatinib is Dependent on CD8+ T-cells

Dasatinib: 3mg/day aCD8: 200ug/day

P815 Mastocytoma cells have a constitutively activated mutated c-kit receptor (D814Y)

Yang Y...Hwu P. Blood 120(23):4533-43, 2012

Dasatinib Combined with anti-OX40 Improves the Antitumor Response

Yang Y...Hwu P. Blood 120(23):4533-43, 2012

Delayed Tumor Progression in Tumor-bearing Mice Receiving anti-PD-1 and ACT Treatment

Increased Number of Transferred T-cells at the Tumor Site in Tumor-bearing Mice Receiving anti-PD-1 and ACT treatment

Genetically Engineered Mouse Model (GEM)

Advantage

- Has intact immune system
- Useful to assess tumor development and treatment

Drawback

- Few mutations which may cause tumors to be less immunogenic
- Difficult to obtain mice (costly and labor intensively)
- Challenging to perform therapy studies

Examples of GEMs

Author (year)	Genetic Modification	Latency/Penetrance
Dankort et al. (2009)	TYR::CreERT2Pten ^{f/f} Braf ^{ca/wt}	10 weeks/100%
Chin et al. (1999)	TYR::rtTAtetO::HRas ^{G12V}	60 days/25%
Held et al. (2010)	TYR::CreERT2Pten $^{ extstyle{f/f}}$ Cdkn2a $^{ extstyle{f/f}}\pmeta$ -catenin $^{ extstyle{Loxex3/wt}}$	40 weeks/100%

BP (mutant BRAF/PTEN-/-)Conflicting Results

BP fish cells (1e6/mouse) were inoculated on day -7. Tumor-bearing mice were fed with a diet containing PLX4720 (417mg/kg) or control diet from day 0. Mice were sacrificed on day 3, 7 and 16. Tumors and spleens were harvested, single-cell suspensions were stained with anti-CD45, anti-CD3, anti-CD8 and anti-CD4 for flow cytometry assay.

PLX (BRAFi) +/- CpG in GEM Model

Solution: "De-Risk" Clinical Trials with Focused Modeling

- In Vitro Models
- Mouse In Vivo Models
- Clinical Trial Monitoring

Evaluation of Immune Cells in PatientsReceiving a BRAF inhibitor (GSK)

- PBMC and serum were collected from 13 patients before and after a 28 day cycle of BRAF inhibition.
- No changes were found in serum cytokines, peripheral blood cell counts, T-cell subsets, or CD4 or CD8 recall responses.

The V600 Mutant BRAF Inhibitor Treatment Does Not Affect CD4+ and CD8+ Memory T-cell Responses to Recall Antigens

Increase in Melanoma Antigen Specific T-cells Alter BRAF Inhibition

Future Studies

Understand the *in vivo* effects on the immune system of:

PI3K inhibitors

AKT inhibitors

MEK and BRAF/MEK inhibitors

Solution: "De-Risk" Clinical Trials with Focused Modeling

- In Vitro Models
- Mouse In Vivo Models
- Clinical Trial Monitoring

Acknowledgements

Preclinical Data

- Shruti MaluChengwen Liu
- Weiyi Peng
- Minying Zhang
- YanYan Lou
- Willem Overwijk
- Manisha Singh
- Elizabeth Grimm
- Greg Lizee
- Jahan Khalili
- Michael Davies
- Scott Woodman

Laboratory Endpoints

- Chantale Bernatchez
- Laszlo Radvanyi
- Luis Vence
- IMCL

Clinical Research

- Melanoma Medical Oncologists
- Surgeons
- Pathologists
- David Hong
- Linda Duggan

Massachusetts General Hospital

- Keith T. Flaherty
- Jennifer A. Wargo

Prometheus

Roche/Genentech

GSK

3M

NCI