Creating a Multiplex Immunotherapeutic Virus

Ottawa Hospital Research Institute University of Ottawa, Department of Biochemistry, Microbiology & immunology

John C. Bell Disclosure

Scientific Co-Founder and Advisor

- Understanding virus -host cell interactions provides therapeutic opportunities Oncolytic Virus Paradigm
- Multiplex Virus Therapeutic as a Strategy to Overcome Tumour Heterogenity
- Virally Programed Exosomes
- Virally Encoded T cell Engagers
- Virally Encoded Self Amplifying RNA Molecules

TUMOUR EVOLUTION

The Same Biological Processes that Control Cell Growth, Death and Metabolism also Control the Ability of Individual Cells to Fight Virus Infections!

Viruses Can be Engineered to Exploit Tumour Specific Defects in Anti-Virus Defense Mechanisms

The Oncolytic Virus Paradigm

Tumor Heterogeneity Thwarts Monotherapeutic Strategies

Combination Therapy Will be Required to have Broadly Active Immunotherapeutics

Challenges:

- (1) Systemic Combinations will/may have Compounded Toxicities
- (2) Costs of Novel IO Combinations may not fit in our Health Care Systems

Our Solution - Create a Single Virus Therapeutic that Can Deliver Multiple Therapeutic Payloads

Characteristics of a Multiplex Virally Based Immunotherapeutic

- Ideally, can be Delivered Systemically
- Highly Selective Replication only in Malignant Tissues
- Good Replication and Spread Within and Between Tumours

• Has Ample Coding Capacity for Therapeutic Transgenes

Vaccinia Virus – A Systemically Delivered Oncolytic Virus

Colon Cancer

Ovarian Cancer

Breitbach et al Nature 2010

Vaccinia Virus Lifecycle

Information from Moss, B. Poxviridae. In Fields Virology, 6th ed. Philadelphia: Lippincott Williams & Wilkins, 2013.

Bio-Selecting an Optimal Vaccinia Strain

Enhancing "Tumour Selective" Oncolysis

STING: a master regulator in the cancer immunity cycle

Zhu et al Molecular Cancer 18:152 (2019)

STING Pathway Senses Virus Infection and Activates Anti-viral Responses

Suppression of STING Signaling through Epigenetic Silencing and Missense Mutation Impedes DNA-Damage Mediated Cytokine Production

Hiroyasu Konno1, Shota Yamauchi1, Anders Berglund2, Ryan M. Putney2, James J. Mulé3,4, and Glen N. Barber1,*. Oncogene. 2018 April; 37(15): 2037–2051.

80% of Human Tumour Samples Have Silenced or Mutated Sting Pathways

A STING Activating Virus Will be Rapidly Detected and Eliminated from Normal Tissues but Remain Stealth in Tumour Cells

SKV – A Novel Oncolytic Vaccinia Virus Platform

Integration of Biological Data Led to the Development of SKV

Adrian Pelin

Ragunath Singaravaleu

SKV Activates the cGAS-STING Pathway

18

Fuan Wang

SKV – Highly Selective for Cancer Cells

Wyeth TK-

Copenhagen TK-

SKV

Adrian Pelin

SKV is Active in a Spectrum of Human Tumours

Attacking Cancers with a Multiplex Virus Based Immunotherapeutic Poster P811 Friday AM

Twumasi-Boateng, Pettiogrew, Kwok, Bell, Nelson (2018) Nature Reviews Cancer

Exosomal Transport of MicroRNAs

Strategies for Reprogramming the Tumour Microenvironment with Virally Expressed microRNAs

Genetic Strategies to Enhance OV Replication

Marie-Eve Wedge

Larissa Pikor

Can we Develop a Strategy to Spread amiRNAs from Infected to Un-infected Cells

Mathieu Crupi.

Giuseppe Pugiliese

Virally Programmed Exosomes to Modify the Tumour Microenvironment

VSV∆51-shPDL1 downregulates PD-L1 levels in B16-F10 cells (MOI 0.1, 18 hpi)

EVs-derived from B16-F10 VSV Δ G-shPDL1 infected cells downregulate PD-L1 levels in uninfected cells

Encoding T Cell Engagers in SKV

SKV – A Therapeutic Aircraft Carrier?

Nikolas Martin

Self Amplifying RNA Vectors

Transfer of saRNA from Infected to Non-Infected Cells

SKV – Disseminating saRNA within the Tumour Microenvironment

SKV – Green saRNA - Red

Time

Leeds University Vicky Jennings Institute of Cancer Research Alan Melcher Turnstone Biologics Mike Burgess Caroline Breitbach Steve Berinstein Dave Stojdl NCT Germany

OHRI

Carolina Ilkow Jean Simon Diallo Marie-Eve Edge Brian Keller *McMaster University* Brian Lichty Fuan Wang *NCT Heidelberg* Guy Ungerechts