

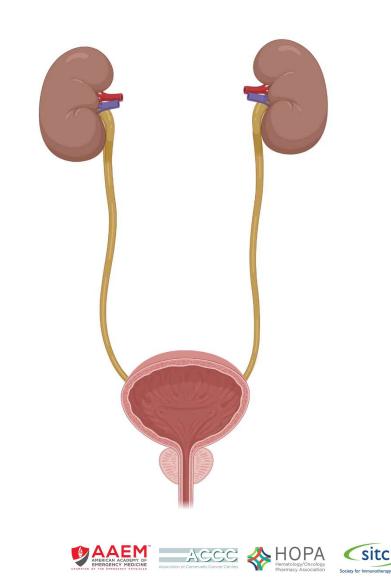
Immunotherapy for the Treatment of Genitourinary Malignancies

Nabil Adra, MD

Assistant Professor of Clinical Medicine

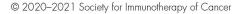
Indiana University Simon Cancer Center

- Consulting Fees: Merck, Astellas
- Contracted Research: Merck, Astellas, Genentech, Exelixis
- I will be discussing non-FDA approved indications during my presentation.


AUXIC ALCORECT ALCORE



- Renal cell carcinoma
 - Approved immunotherapies
 - Future directions
- Urothelial carcinoma
 - Approved immunotherapies
 - Future directions
- Prostate cancer
 - Approved immunotherapies
 - Future directions


Renal cell carcinoma (RCC)

FDA-approved immunotherapies for mRCC

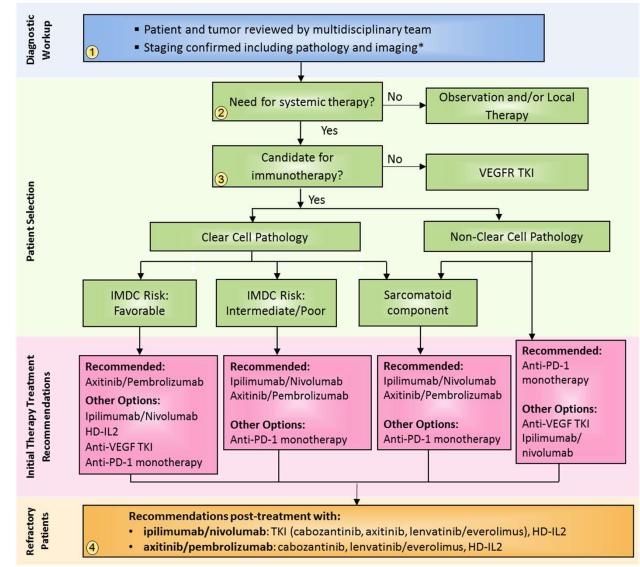
Drug	Indication	Dose
High dose Interleukin-2	Metastatic RCC	600,000 International Units/kg (0.037 mg/kg) IV q8hr infused over 15 minutes for a maximum 14 doses, THEN 9 days of rest, followed by a maximum of 14 more doses (1 course)
Interferon-α + bevacizumab	Clear cell RCC	IFN 9 MIU s.c. three times a week + bevacizumab 10 mg/kg Q2W
Nivolumab	Clear cell RCC refractory to prior VEGF targeted therapy	240 mg Q2W or 480 mg Q4W
Nivolumab + ipilimumab	Clear cell RCC, treatment naïve	3 mg/kg nivo plus 1 mg/kg ipi Q3W x 4 doses then nivo maintenance at flat dosing
Pembrolizumab + axitinib	Advanced RCC, Treatment naïve	200 mg pembro Q3W or 400 mg Q6W + 5 mg axitinib twice daily
Avelumab + axitinib	Advanced RCC, Treatment naïve	800 mg avelumab Q2W + 5 mg axitinib twice daily

Front-line immunotherapy treatments for RCC

Study	Treatment arm(s)	Patient selection criteria	Ν	ORR	Median PFS (months)	Median OS (months)
CheckMate 214	Nivolumab + ipilimumab*	Untreated, advanced clear cell RCC	550	42%	12.0	47.0
	Sunitinib	(poor/intermediate risk)	546	26%	8.3	26.6
KEYNOTE-426	Pembrolizumab + axitinb*	Untreated, advanced clear cell RCC	432	60%	15.4	NR
	Sunitinib		429	40%	11.1	35.7
JAVELIN Renal 101	Renal 101 Avelumab + axitinib*	Untreated, advanced clear cell RCC	442	52.5%	ITT: 13.3 PD-L1+: 13.8	ITT: NE PD-L1+: NE
	Sunitinib		444	27.3%	ITT: 8.0 PD-L1+: 7.0	ITT: NE PD-L1+: 25.6
IMmotion151	Atezolizumab + bevacizumab	clear cell or	454	ITT: 37% PD-L1+: 43%	ITT: 11.2 PD-L1+: 11.2	ITT: 33.6 PD-L1+: 34.0
Sunitinib	Sunitinib		461	ITT: 33% PD-L1+: 35%	ITT: 8.4 PD-L1+: 7.7 EE3	ITT: 34.9 PD-L1+: 32.7
*FDA-approved IO regimen						

Tannir, ASCO-GU 2020; Pilmack, ASCO 2020; Choueiri, Ann Oncol 2020; Rini, Lancet 2019.

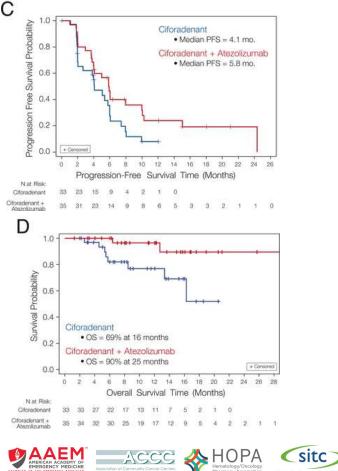
#LearnACI



EE3 IMmotion151: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(19)30723-8/fulltext Emily Ehlerding, 7/28/2020

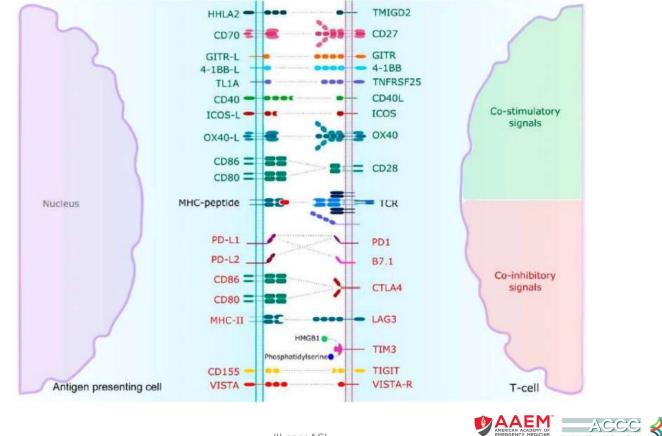
SITC Cancer Immunotherapy Guideline for advanced renal cell carcinoma

*Baseline imaging recommendations discussed in figure legend.


Notes: 1) Clinical Trials are always an option for any patient, in any category. 2) This recommendation may change as data matures.

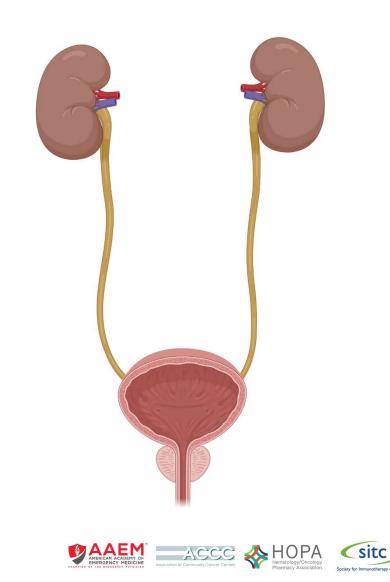
Rini, J Immunother Cancer 2019.

In development: A2AR antagonist + anti-PD-L1 c

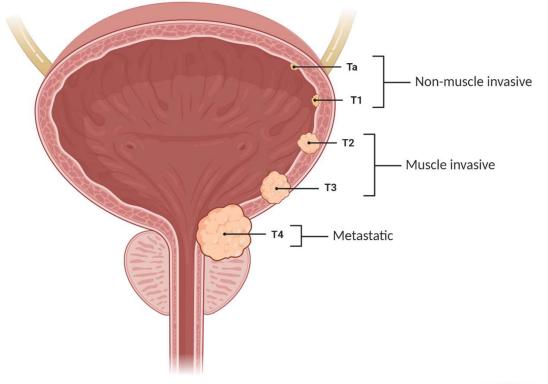

Treatment arm	N	ORR	6-month disease control
Ciforadenant	33	3%	Naïve: 0%
			Prior ICI: 25%
Ciforadenant +	35	11%	Naïve: 50%
atezolizumab			Prior ICI: 35%

Fong, Ca Discov 2020 © 2020–2021 Society for Immunotherapy of Cancer

In development: additional immunotherapy approaches



Deleuze, Int J Mol Sci 2020 © 2020–2021 Society for Immunotherapy of Cancer


- Renal cell carcinoma
 - Approved immunotherapies
 - Future directions
- Urothelial carcinoma
 - Approved immunotherapies
 - Future directions
- Prostate cancer
 - Approved immunotherapies
 - Future directions

© 2020–2021 Society for Immunotherapy of Cancer

Urothelial carcinoma (UC)

© 2020–2021 Society for Immunotherapy of Cancer

Approved checkpoint inhibitor for non-muscle invasive bladder cancer

Drug	Indication	Dose
Pembrolizumab	BCG-unresponsive, high-risk NMIBC, with or without papillary tumors and ineligible for cystectomy	200 mg Q3W or 400 mg Q6W

Response, n (%)	KEYNOTE-057 cohort A (n=97)
Complete response	40 (41.2)
Non-complete response	56 (57.7)
Persistent	40 (41.2)
Recurrent	6 (6.2)
NMIBC stage progression	9 (9.3)
Progression to T2	0
Extravesical disease	1 (1.0)
Non-evaluable	1 (1.0)

FDA Advisory Committee Briefing Document, 2019. © 2020–2021 Society for Immunotherapy of Cancer

#LearnACI

Society for Immunotherapy of Cancer

Approved checkpoint inhibitors for mUC – *cisplatin refractory*

Drug	Indication	Dose
Atezolizumab	Advanced/metastatic UC	1200 mg Q3W
Avelumab	Advanced/metastatic UC	10 mg/kg Q2W
Durvalumab	Advanced/metastatic UC	10 mg/kg Q2W
Nivolumab	Advanced/metastatic UC	240 mg Q2W or 480 mg Q4W
Pembrolizumab	Advanced/metastatic UC	200 mg Q3W or 400 mg Q6W

© 2020–2021 Society for Immunotherapy of Cancer

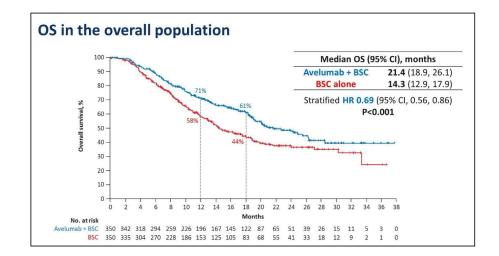
Approved checkpoint inhibitors for mUC – *cisplatin ineligible*

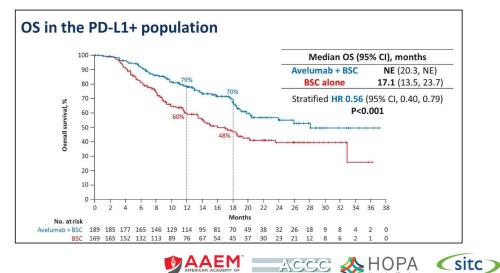
Drug	Indication	Dose
Atezolizumab	Advanced/metastatic UC (PD-L1 ≥5%)	1200 mg Q3W
Pembrolizumab	Advanced/metastatic UC (PD-L1 CPS ≥10)	200 mg Q3W or 400 mg Q6W

June 2018

FDA limits the use of atezolizumab and pembrolizumab for some urothelial cancer patients

- Locally advanced or metastatic urothelial carcinoma and ineligible for cisplatin-based chemo and with detectable PD-L1 expression in tumor (CPS ≥ 10, pembro; IC ≥ 5% tumor area, atezo)
- Patients ineligible for any platinum-containing chemotherapy regardless of PD-L1 status

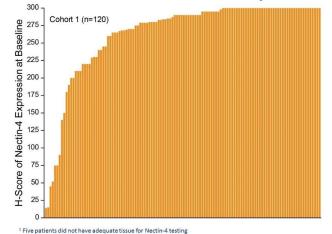


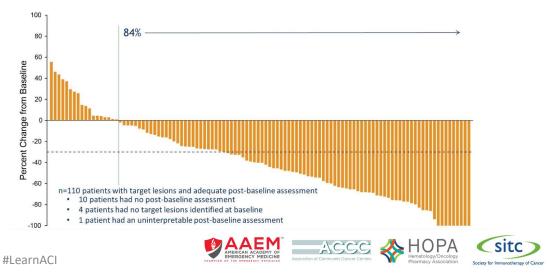

© 2020–2021 Society for Immunotherapy of Cancer

Approved checkpoint inhibitor for maintenance treatment

Drug	Indication	Dose
Avelumab	Maintenance of locally advanced/metastatic UC without progression on first-line Pt chemotherapy	800 mg Q2W

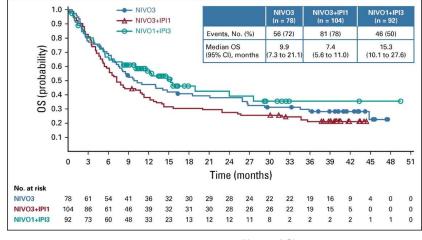
Powles, ASCO 2020.


#LearnACI


Approved antibody-drug conjugate for mUC

Drug	Indication	Dose
Enfortumab vedotin	Locally advanced/metatstatic UC with previous αPD-1/PD-L1 and Pt- based chemotherapy	1.25 mg/kg IV on days 1, 8, and 15 of each 28-day cycle

EV-201: Cohort 1 Change in Tumor Measurements per BICR



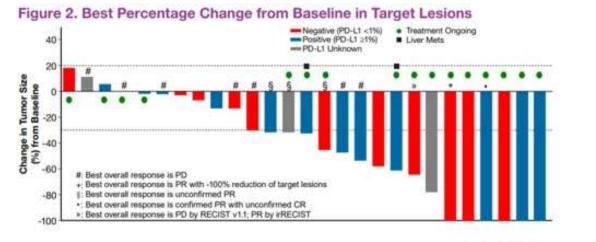
Petrylak, ASCO 2019.

In development: Ipilimumab + Nivolumab CheckMate 032

Treatment arm	n	ORR	Median PFS	Median OS	Grade 3-4 TRAEs
Nivolumab 3 mg/kg Q3W	78	ITT: 25.6% PD-L1+: 26.9%	2.8 months	9.9 months	26.9%
Nivolumab 3 mg/kg + ipilimumab 1 mg/kg	104	ITT: 26.9% PD-L1+: 35.5%	2.6 months	7.4 months	30.8%
Nivolumab 1 mg/kg + ipilimumb 3 mg/kg	92	ITT: 38.0% PD-L1+: 58.1%	4.9 months	15.3 months	39.1%

Sharma, J Clin Oncol 2019.

© 2020–2021 Society for Immunotherapy of Cancer



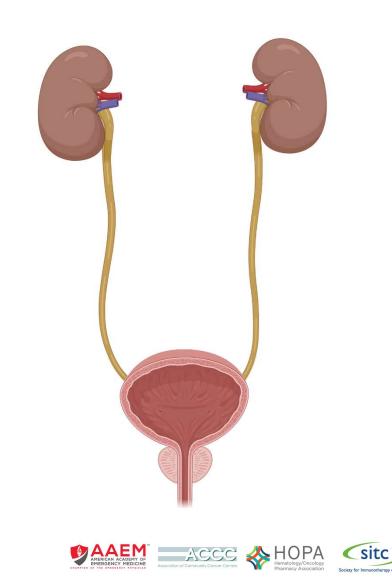
In development: NKTR-214 + nivolumab

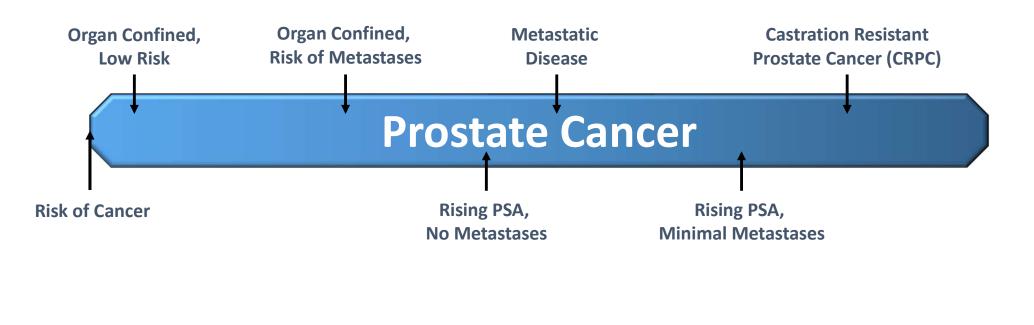
Treatment	n	ORR
NKTR-214 + nivolumab	27	48%

After treatment, 70% of patients with PD-L1-negative tumors converted to PD-L1-positive.

Siefker-Radtke, ASCO-GU 2020.

#LearnACI




- Renal cell carcinoma
 - Approved immunotherapies
 - Future directions
- Urothelial carcinoma
 - Approved immunotherapies
 - Future directions
- Prostate cancer
 - Approved immunotherapies
 - Future directions

© 2020–2021 Society for Immunotherapy of Cancer

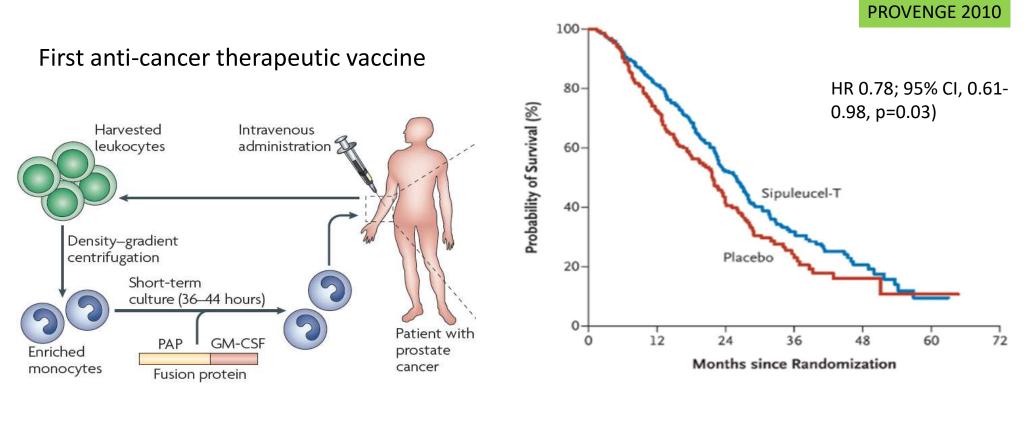

The Spectrum of Prostate Cancer

Immunology of prostate cancer

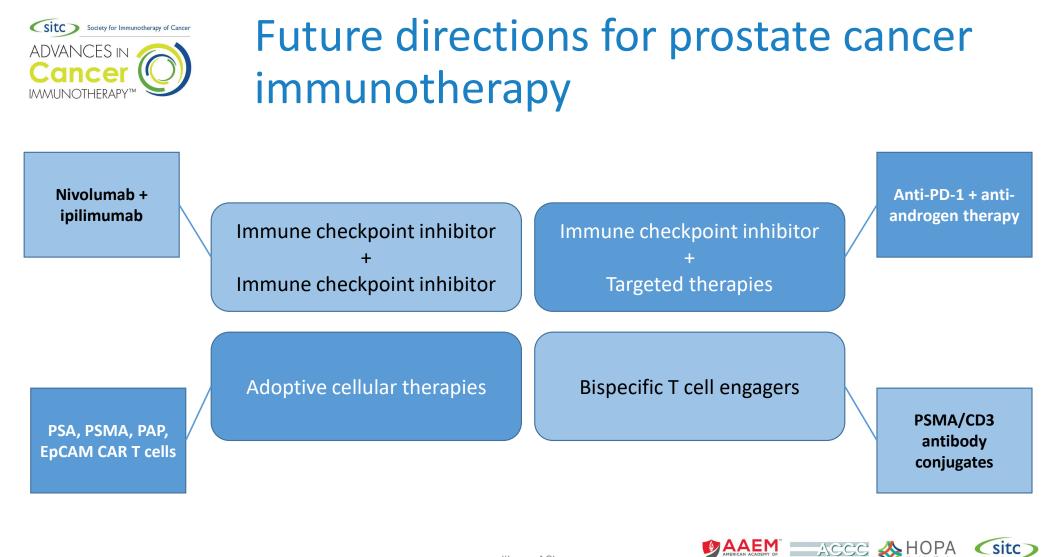
© 2020–2021 Society for Immunotherapy of Cancer

Immunotherapy landscape in prostate cancer

Trial	Treatment	Population	Key results
KEYNOTE-199	199 Pembrolizumab	RECIST-measurable PD-L1+ mCRPC	ORR: 5%
		RECIST-measurable PD-L1- mCRPC	ORR: 3%
		RECIST nonmeasurable mCRPC	DCR: 37%
KEYNOTE-365	Pembrolizumab + enzalutamide	chemotherapies	PSA response rate: 21.8% Median OS: 20.4 months
	Pembrolizumab + olaparib		PSA response rate: 13% Median OS: 14 months
IMbassador250	Atezolizumab + enzalutamide	Progression on previous hormonal and chemotherapies	Median OS: 15.2 vs 16.6 months
	Enzalutamide		


De Bono, ASCO 2018; Yu, AUA 2020; Sweeney, AACR 2020.

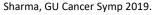
#LearnACI


Sipuleucel-T in mCRPC

Drake et al. Curr Opin Urol 2010 Kantoff et al. NEJM 2010

#LearnACI

ACCEC AND A CONTRACT AND A CONTRACT


© 2020–2021 Society for Immunotherapy of Cancer

In development: nivolumab + ipilimumab in mCRPC

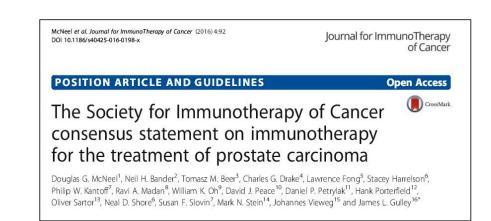
Trial	Treatment	Population	ORR	Median OS
CheckMate 650	Nivolumab + ipilimumab, then nivolumab maintenance	Progression on hormonal therapy, no chemotherapy	25%	19 months
		Progression on chemotherapy	10%	15.2 months

- Higher ORR in:
 - PD-L1 > 1%
 - DNA damage repair deficient
 - homologous recombination deficiency
 - high tumor mutational burden

© 2020–2021 Society for Immunotherapy of Cancer

Conclusions

- The role of immunotherapy in GU malignancies is increasing
- In RCC, many front-line checkpoint inhibitor options are approved
- Multiple checkpoint inhibitors approved for advanced/metastatic urothelial carcinoma, as well as other settings in UC
- Low immune engagement in prostate cancer has limited the application of immunotherapy in this disease



Additional Resources

Rini et al. Journal for ImmunoTherapy of Cancer (2019) 7:354 Journal for ImmunoTherapy https://doi.org/10.1186/s40425-019-0813-8 of Cancer **POSITION ARTICLE AND GUIDELINES** Open Access The Society for Immunotherapy of Cancer Check for consensus statement on immunotherapy for the treatment of advanced renal cell carcinoma (RCC) Brian I. Rini¹, Dena Battle², Robert A. Figlin³, Daniel J. George⁴, Hans Hammers⁵, Tom Hutson⁶, Eric Jonasch⁷, Richard W. Joseph⁸, David F. McDermott⁹, Robert J. Motzer¹⁰, Sumanta K. Pal¹¹, Allan J. Pantuck¹², David I. Quinn¹³, Virginia Seery⁹, Martin H. Voss¹⁰, Christopher G. Wood⁷, Laura S. Wood¹ and Michael B. Atkins^{14*}

© 2020–2021 Society for Immunotherapy of Cancer

• Some figures created using biorender.com

Case Studies

© 2020–2021 Society for Immunotherapy of Cancer

Case Study 1

58yo lady had R nephrectomy 4/2017: 5.6cm clear cell RCC grade 2/4. Developed metastasis to lungs and neck/mediastinal lymph nodes. Enrolled on clinical trial with nivolumab + ipilimumab in 7/2015 \rightarrow complete response. Remained on maintenance nivolumab with complete response.

Question 1: What would you do with nivolumab therapy

- A. Continue until progression
- B. Stop nivolumab after 6 months of maintenance therapy
- C. Stop nivolumab after 12 months of maintenance therapy
- D. Stop nivolumab after 24 months of maintenance therapy

Patient continued on trial with maintenance nivolumab for 3 years. She developed osteomyelitis and spinal abscess and had to go off trial in 12/2018. She progressed in 4/2019 and enrolled on trial with nivolumab+ipilimumab+entinostat \rightarrow complete response. Developed pancytopenia (WBC 1.8, Hg 8.2, Plt 5K)

Question 2: What is the etiology of pancytopenia

- A. Renal cell carcinoma induced bone marrow myelophthisic process
- B. Autoimmune pancytopenia
- C. Entinostat induced pancytopenia
- D. Acute leukemia

Bone marrow biopsy confirmed bone marrow aplasia due to immune checkpoint inhibition treated with prednisone and tacrolimus with full recovery.

Patient has been off treatment for her metastatic renal cell carcinoma since 6/2019 and remains in complete response as of this month.

Case Study 2

53yo lady diagnosed with metastatic bladder cancer in 5/2019 with large liver and retroperitoneal lymph node metastases. She was treated with first-line cisplatin+gemcitabine x6 cycles completed 8/2019 and then monitored with surveillance.

Question 1: As of December 2020, what are standard of care options after completing 6 cycles of cisplatin+gemcitabine

- A. Observation until progression
- B. Maintenance pembrolizumab
- C. Maintenance enfortumab vedotin
- D. Maintenance avelumab

Patient progressed with increasing liver metastases in 7/2020 and was treated with pembrolizumab. She had thyrotoxicosis with severe hyperthyroidism (TSH<0.1, T3 8.3, T4 3.9). She was treated with steroids and methimazole. She also had grade 3 elevation in liver function tests (AST, ALT, bilirubin) which improved after steroids.

Question 2: What is the appropriate next step in treating this patient's metastatic bladder cancer

- A. Resume pembrolizumab
- B. Switch to enfortumab vedotin
- C. Switch to atezolizumab
- D. Revert back to cisplatin-based chemotherapy

Patient was started on treatment with enfortumab vedotin with a partial response and remains on therapy as of today.

