SITC 2019 Gaylord National Hotel

Gaylord National Hotel & Convention Center NOV. 6-10

NATIONAL HARBOR, MARYLAND

Clinical Assessment of Intratumoral Immunomodulation

Jianda Yuan MD, PhD, Anuradha Khilnani MD On behalf of IT Biomarker Team Translational Oncology Early Oncology Development/Merck & Co., Inc. Washington DC, USA, 7 November 2019

Conflict of Interest- Disclosure

I am currently a full time employee of Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA

Outline

- Immune checkpoint inhibitors (CPI) as monotherapy and combination therapy have changed the landscape for standard of care in cancer treatment, which has highlighted the challenge of immunotherapy resistance
- Principles of intratumoral (IT) immunotherapy in evolving CPI landscape
 - Mechanisms of resistance to immunotherapy
 - GEP/TMB analysis reveals patterns of resistance biology
 - Advantages of IT immunotherapy to potentially overcome resistance
 - Growing landscape of IT immunotherapy
- Key biomarker strategy for IT immunotherapies
 - IT biomarkers of PD response to inform dose
 - IT biomarker scope of assessment
 - Potentially inform patient selection for optimal IT therapies

Pembrolizumab Monotherapy has Broad Antitumor Activity Demonstrated in >25 Cancers Types

1. Daud A et al. ASCO 2015; 2. Garon EB et al. ESMO 2014; 3. Seiwert T et al. ASCO 2015; 4. Plimack E et al. ASCO 2015; 5. Nanda R et al. ASCO 2015; 7. Moskowitz C et al. ASH 2014; 8. Zinzani PL et al. ASH 2015; 9. Alley EA et al. ASCO 2015; 10. Varga A et al. ASCO 2015; 11. Ott PA et al. 2015 ASCO; 12. Doi T et al. ASCO 2015; 13. Hsu C et al. ECC 2015; 14. Ott PA et al. ECC 2015; 15. Bang Y-J et al. ECC 2015; 16. Zhu A et al. Lancet Oncol. 2018;19:940-952; 17. Rugo HS et al. ASCO 2015; 18. Frenel JS et al. ASCO 2016; 19. Mehnert JM et al. ASCO 2016; 20. Cohen R et al. ASCO 2016; 21. Ott PA et al. ASCO 2016; 22. Hansen AR et al. ESMO 2016; 23. Reardeon D et al. SNO 2016; 24. Diaz L et al. ASCO 2017, updated 09Oct2018; 25. Mehnert J et al. ESMO 2017; 26. McDermott DF et al. ASCO 2018; 27. McDermott DF et al. AS

CPI Combination Therapies Showing Great OS Benefit

OS benefit demonstrated as part of combination therapy in 4 phase 3 studies and 3 cancer types

Gandhi L et al. N Engl J Med 2018;378:2078-92;
Paz-Ares L et al; N Engl J Med 2018;379:2040-51;
Rini BI et al. N Engl J Med 2019; doi: 10.1056/NEJMoa1816714;
Burtness B et al. ESMO 2018.

Intratumoral Immunotherapy may Overcome Resistance and Improve Clinical response

Resistance mechanisms to CPI monotherapy CPI combination therapy

34th Annual Meeting & Pre-Conference Programs

Resistance Mechanisms to Immunotherapy

Terminology for different resistance mechanisms to immunotherapy

Mechanisms of primary and adaptive resistance to immunotherapy

Term	Description		Term			
Primary resistance	A clinical scenario where a cancer does not respond to an immunotherapy strategy. The mechanistic basis of lack of response to immunotherapy may include adaptive immune resistance		Tumor cell- intrinsic		Tumor cell- intrinsic	
Adaptive immune resistance	A mechanism of resistance where a cancer is recognized by the immune system but it protects itself by adapting to the immune attack. Given the evolving nature of the immune/cancer cell					
	interaction, this could clinically manifest as primary resistance, mixed responses or acquired resistance		Tumor cell-			
Acquired resistance	red A clinical scenario in which a cancer initially responded to ance immunotherapy but after a period of time it relapsed and		extrinsic	(
	progressed					

Term	Mechanisms
Tumor	Absence of antigenic protein
cell- intrinsic	Absence of antigen presentation
	Genetic T cell exclusion
	Insensibility to T cells
Tumor	Absence of T cells
cell- extrinsic	Inhibitory immune checkpoints
	Immunosuppressive cells

Modified from Sharma, Hu-Lieskovan, Wargo, Ribas. Cell, 2017

TMB and GEP/PD-L1 Reveal Different Patterns of **Resistance Biology in Different Groups**

Noninflamed tumor vs Inflamed tumor

Priming an immune response against tumors without pre-existing immunity Boosting inadequate antitumor immunity

- ** Few or no immune cells and cytotoxic T cells with low TCR clonality
- Lack pre-existing antitumor immunity *
- Lack of chemokines essential for T-** cell homing, or vascular factors or barriers

- ** A TME that contains immune cells, high expression of proinflammatory cytokines with high TCR clonality
- Pre-existing T-cell-mediated ** immunity that is restrained by immunosuppressive pathways

Dendritic cell

Immunosuppressive cytokines in the * TME

Potential Advantages of Intratumoral Immunotherapy

- Allow for efficacious dose exposure in the tumor microenvironment while limiting systemic exposure and thereby minimizing systemic adverse events
- Enable testing of potent immunostimulators that may otherwise have prohibitive systemic toxicity
- Expand options for potential synergistic combination therapy
- Combine as dual or triple combination therapy to target multiple resistance mechanisms while minimizing systemic toxicity

Current Landscape of IT Immunotherapy (Selected Examples)

Oncolytic Viruses:

- T-VEC (HSV-1/GM-CSF)
- Coxsackievirus A21
- NDV (New Castle Disease Virus)
- Canerpaturev (C-REV, HF10)

– more

Immune Agonists:

- TLR Agonists, MDA-5, Bacillus Calmette-Guerin (BCG)
- STING Agonists, RIG-I Agonists,
- Anti-CD40 Agonists
- Cytokines (Interferon, Interleukin-2, GM-CSF)
- more

Intratumoral Administration of Immune Stimulatory Products

#SITC2019

Current Landscape of IT Immunotherapy (Coxsackievirus A21)

Pandha HS et al 2018 the International Oncolytic Conference at Oxford (UK)

#SITC2019

STING Mechanism of Action

- Intratumoral (IT) injection of STING agonist leads to the production of type-l interferons (IFNs) and proinflammatory cytokines
- IFN-β strongly enhances crosspresentation of tumor antigens by CD8α+ CD103+ DCs either in the tumor or in tumor-draining lymph nodes
- Activated tumor-specific CD8+ T cells proliferate and mediate tumor killing at injected and non-injected lesions
- Potential to augment anti-tumor immunity stimulated by checkpoint blockade

#SITC2019

Harrington KJ et al ESMO 2018

Current Landscape of IT Immunotherapy (RIG-I)

- Ubiquitously expressed cytosolic RNA receptor^{1,2}
- Recognizes double-stranded RNA bearing a 5'triphosphate, and plays a key role in antiviral defense^{1,2}
- Activation of RIG-I triggers apoptosis, preferentially in tumor cells, and activation of the innate immune system via type I interferon (IFN) signaling in preclinical model^{1,3}

1. Elion DL, Cook RS. *Oncotarget.* 2018;9:29007-17. 2. Kell AM, Gale M Jr. *Virology.* 2015;479-80. 3. Besch R et al. *J Clin Invest.* 2009;119(8):2399-411. Reproduced from Reikine S, et al. Front Immunol. 2014;5:342.

IT Immunotherapy Key Clinical Questions

- A few key questions need to be addressed in order to determine doses and schedules to maximize benefits of combination regimens:
 - Dose-schedule determination
 - Identify and validate biomarkers for proof of mechanism of action
 - Assess immune response
 - Evaluate injected and noninjected effects
 - Patient selection

Dose Schedule Determination

Bioavailability	Volume and concentration of agent
	Ratio between tumor size and volume of injection
	Local metabolism of agent
	Tumor vasculature
	Tumor interstitial pressure
	Expression of the target in the tumor
Frequency of injection	Variable across agents with different mechanisms of action
	Half-life of the agent
	Time course of pharmacodynamic effects
	Biomarkers, as continued priming of T cells may be needed to replenish and
	maintain an antitumor immune response

#SITC2019

Intratumoral Immunotherapy Dose Finding

- Tumor PK/PD analysis including GEP RNA signature informs efficacious dose range
- Injected and non-injected lesion level response analyses to inform efficacious dose
- Dose level overall response analysis to determine dose response curve. Some IT immune agonists may have demonstrated a bell shaped dose response curve, with decreased efficacy at higher dose levels

Intratumoral Biomarker Assessment Strategy

Immune assessment (pre- and post-treatment)

Standardization of irRECIST and IT technique

Standardization of Intratumoral Response Assessment – itRECIST

Standardization of Intratumoral Technique

Optimize safety and create a technique guidance

Key Takeaways for Clinical Assessment of Intratumoral Immunomodulation

- Immune checkpoint inhibitors are changing the landscape of standard of care in cancer treatment with emerging immunotherapy resistance mechanisms.
- IT immunotherapy may overcome CPI resistance mechanisms, when administered as combination therapy.
- IT biomarker data will inform dose decisions for IT immunotherapy, provide deeper understanding of mechanism of action, and allow for selection of patients best suited for specific IT therapies

Acknowledgements

ITBiomarker team

Anuradha Khilnani Joshua Brody Robert Andtbacka Siwen Hu-Lieskovan Jason J. Luke Adi Diab Aurelien Marabelle Alex Cao Alexandra Snyder F. Stephen Hodi

Merck

Eric Rubin Elliot Chartash Scott Pruitt Vincent L. Giranda Konstantin Dobrenkov Anlong Li Viola Jin Chen Kapil Mayawala Gretchen Baltus Uyen Phan **Greg Goldmacher** Amy Calamari

Apothecom

Alexandra Lindsey Dana Francis Holly Cappelli Michele Leo Matt Grzywacz

Our patients

