SITC 2019 Gaylord National Hotel & Convention Center Nov. 6-10

NATIONAL HARBOR, MARYLAND

Sitravatinib + Nivolumab Demonstrates Clinical Activity in Platinum-Experienced Urothelial Carcinoma Patients Who Progressed on Prior Checkpoint Inhibitor

Pavlos Msaouel¹, Arlene O. Siefker-Radtke¹, Randy F. Sweis², Amir Mortazavi³, Nicholas J. Vogelzang⁴, Ulka Vaishampayan⁵, Thomas P. Bradley⁶, Manojkumar Bupathi⁷, Luke T. Nordquist⁸, David R. Shaffer⁹, Joel Picus¹⁰, Jeffrey T. Yorio¹¹, Shifeng Mao¹², Gurjyot K. Doshi¹³, Daniel L. Spitz¹⁴, Sunil Gandhi¹⁵, Daniel Chong¹⁶, Arash Rezazadeh Kalebasty¹⁷, James Christensen¹⁸, Peter Olson¹⁸, Demiana Faltaos¹⁸, Ronald L. Shazer¹⁸, Maria Winter¹⁸, Delia Alvarez¹⁸, Hirak Der-Torossian¹⁸, Jonathan E. Rosenberg¹⁹

¹The University of Texas MD Anderson Cancer Center, Houston, TX; ²The University of Chicago Medicine, Chicago, IL; ³The Ohio State University Comprehensive Cancer Center, Columbus, OH; ⁴Comprehensive Cancer Centers of Nevada, US Oncology Research, Las Vegas, NV; ⁵Barbara Ann Karmanos Cancer Institute, Detroit, MI; ⁵Northwell Health - Monter Cancer Center, Lake Success, NY; ⁷Rocky Mountain Cancer Centers, Littleton, CO; ⁸Urology Cancer Center and GU Research Network, Omaha, NE; ⁹New York Oncology Hematology, US Oncology Research, Albany, NY; ¹⁰Washington University in St. Louis School of Medicine, St. Louis, MO; ¹¹Texas Oncology Research, Austin, TX; ¹²Allegheny General Hospital, Pittsburgh, PA; ¹³Texas Oncology-Memorial City, US Oncology Research, Houston, TX; ¹⁴Florida Cancer Specialists & Research Institute, West Palm Beach, FL; ¹⁵Florida Cancer Specialists, US Oncology Research, Fairfax, VA; ¹⁷Norton Cancer Institute, Louisville, KY; ¹⁸Mirati Therapeutics, Inc., San Diego, CA; ¹⁹Memorial Sloan-Kettering Cancer Center, New York, NY

Presenter Disclosure Information

Pavlos Msaouel, MD

The University of Texas MD Anderson Cancer Center Houston, TX, USA

The following relationships exist related to this presentation:

Advisory Boards / Honoraria:

Bristol-Myers Squibb, Mirati Therapeutics

Non-branded educational programs:

Exelixis, Pfizer

Clinical Trials with Grant Support:

Bristol-Myers Squibb, Mirati Therapeutics, Takeda Pharmaceutical Company

There will be discussion about the use of products for non-FDA approved indications in this presentation

Sitravatinib (MGCD516): A Spectrum-Selective Kinase Inhibitor

- Sitravatinib is an orally available small molecule that inhibits a spectrum of related receptor tyrosine kinases (RTKs) including:
 - TAM family (Tyro3, Axl, MerTK)
 - Split family (VEGFR2/PDGFR and c-Kit)
 - o c-Met

- Inhibition of these target classes may enhance anti-tumor activity through:
 - Modulation of the immunogenic status of tumors
 - Improvement of tumor perfusion by reducing intratumoral pressure
 - Modulating subsets of immune cells

Sitravatinib in the Tumor Microenvironment (TME)

Sitravatinib Inhibits Immunosuppressive Immune Populations and Augments Checkpoint Inhibitor Therapy

Inhibition of M2 macrophage polarization by sitra or MERTK KO ex vivo

Sitravatinib decreases M2 MΦs, M-MDSCs and increases CD4 and CD8 cells in a syngeneic model

Sitravatinib augments PD-1 therapy in CPI refractory models

Du W, et al, Sitravatinib potentiates immune checkpoint blockade in refractory cancer models. JCl Insight, 2018

- Sitravatinib shifts macrophage polarization M2 → M1, depletes MDSCs and increases CD8+ T cells in tumor-bearing syngeneic mice
- Sitravatinib augments PD-1 therapy in CPI-refractory models and in mice with complete responses to sitravatinib + PD-1 therapy, tumors do not form upon re-innoculation, confirming an adaptive immunity-based mechanism

Urothelial Carcinoma Background

- Results in approximately 165,000 deaths per year worldwide
- Platinum-based chemotherapy is the cornerstone of first-line therapy
 - Most patients experience treatment resistance or intolerance
- Since 2016, treatment options for platinum-refractory or platinum-ineligible advanced UC have been expanded to include anti-PD-1 and anti-PD-L1 checkpoint inhibitors (CPI)
 - Single agent CPI response rates in UC are relatively low (around 20%)
 - Durable clinical responses in a subset of patients
- Strategies to improve clinical efficacy and overcome acquired or primary resistance to CPI therapy are needed
 - Combine an anti-PD-1 or anti-PD-L1 CPI with an agent that has both immune modulatory and antitumor properties

516-003 Study Design

Open-label,
multi-center
Phase 2 Study
to evaluate
sitravatinib +
nivolumab
in patients with
locally-advanced
or metastatic UC

516-003 Cohort 1

- Hypothesized that the combination of sitravatinib + nivolumab will restore or enhance CPI clinical activity in pts with immunotherapy-refractory UC
 - Could enhance the antitumor activity observed with either agent alone
 - Sitravatinib + nivolumab has also been shown to be well-tolerated in other indications, including NSCLC and RCC
- Cohort 1 patients (data cut-off of 17 October 2019)
 - UC patients who have progressed on or after treatment with a CPI, as the most treatment prior to the study
 - AND were previously treated with platinum-based chemotherapy
- Completed enrollment into the expansion phase

Continuous 28-day Cycles
Sitravatinib 120 mg QD orally
+
Nivolumab 240 mg IV Q2W or 480 mg IV Q4W
Tumor Assessments performed Q8W

516-003 Objectives & Eligibility Criteria

OBJECTIVES/ENDPOINTS

PRIMARY

Clinical activity by ORR per RECIST Version 1.1

SECONDARY

- Safety & tolerability
- Secondary efficacy endpoints including DOR, CBR, PFS & OS
- Pharmacokinetics (PK) of sitravatinib
- PK of sitravatinib in patients with renal impairment

EXPLORATORY

- Circulating PD-L1, immune cell populations and cytokines
- Tumor cell PD-L1 expression, tumor infiltrating immune cell populations & gene expression signatures
- Tumor gene alterations in circulation & in tumor tissue

KEY ELIGIBILITY CRITERIA

- Histologically-confirmed transitional cell UC that is locally advanced or metastatic & is unresectable
- Most recent treatment must have included anti-PD-1 or anti-PD-L1 CPI with radiographic PD on or after the CPI
 - No prior treatment with other immunotherapies (e.g. anti-CTLA-4, anti-OX40 and anti-CD137)
- Received prior platinum-based chemotherapy
 - If peri-operative setting, must have PD ≤ 1 yr of last dose
- Measurable disease, as per RECIST Version 1.1
- ECOG 0-1
- GFR ≥ 30 mL/min per CKD-EPI
- No active brain metastases, unless adequately treated & neurologically-stable off treatment

516-003 Cohort 1 Patient Disposition

Enrolled Population	33
Safety Population (received ≥1 dose)	33 (100%)
 Early treatment discontinuations (prior to 1st tumor assessment) Unrelated AE Global deterioration of health Withdrew consent 	4 2 1 1
Too early for 1st tumor assessment (<8 wks on study)	7
Evaluable Population (≥1 on-study tumor assessment)	22 (67%)

516-003 Cohort 1 Safety Population Characteristics (N=33)

Age, years	Median (range)	68 (47, 83)
	≥75 years, n (%)	8 (24)
Gender, n (%)	Male	23 (70)
	Female	10 (30)
Race, n (%)	Caucasian	30 (91)
	Black or African American	2 (6)
	Other (refused to provide)	1 (3)
ECOG PS, n (%)	0	15 (45)
	1+	18 (55)
Smoking, n (%)	Former smoker	17 (52)
	Never smoker	14 (42)
	Current smoker	2 (6)

^{*} Patients with 1 prior therapy had a platinum-based chemotherapy and a PD-(L)1 inhibitor in combination

Disease stage at study entry, n (%)	Metastatic Locally advanced	30 (91) 3 (9)
Metastasis sites at baseline, n (%)	Visceral disease Liver Lymph node only Lymph node + brain/bone	23 (70) 10 (30) 7 (21) 3 (9)
Hemoglobin at baseline, n (%)	<10 g/dL	7 (21)
Bellmunt prognostic factors, n (%)	≥2 adverse factors	8 (24)
Number of prior systemic therapy in advanced/metastatic setting, n (%)	Median (range) 1* 2 3	2 (1, 4) 1 (3) 27 (82) 2 (6) 3 (9)

516-003 Preliminary Sitravatinib Pharmacokinetics

- The PK exposure values attained in UC patients Cohort 1 are consistent with the PK levels historically observed
- In the current study, limited exposure parameters were derived due to the sparse sampling collections (0, 2 and 4hrs on C1D1 and C1D15)
- The 120 mg QD dose resulted in a single dose geometric mean Cmax of 21 ng/mL reached after approximately 3 hrs. At steady state the geometric mean Ctrough and Cmax values were 50 and 72.5 ng/mL, respectively
- A renal impairment sub-study is ongoing to compare PK in patients with mild or moderate renal impairment to patients with no renal impairment

516-003 Safety

Most Frequent (>15%) Related Treatment-Emergent Adverse Events (Sitravatinib and/or Nivolumab)

	Safety Population (N=67, Cohorts 1-6; N=33, Cohort 1 only)			
Adverse Event (Preferred Term)	Cohorts 1-6 All Grades n (%)	Cohort 1 All Grades n (%)	Cohorts 1-6 Grade 3 n (%)	Cohort 1 Grade 3 n (%)
Fatigue	36 (54%)	19 (58%)	6 (9%)	4 (12%)
Diarrhea	33 (49%)	16 (48%)	5 (8%)	3 (9%)
Decreased appetite	22 (33%)	11 (33%)	1 (2%)	1 (3%)
Dysphonia	20 (30%)	11 (33%)	0	0
Nausea	16 (24%)	11 (33%)	1 (2%)	0
Alanine aminotransferase increased	16 (24%)	7 (21%)	0	0
Palmar-plantar erythrodysesthesia syndrome (PPE)	14 (21%)	6 (18%)	2 (3%)	1 (3%)
Aspartate aminotransferase increased	12 (18%)	5 (15%)	0	0
Hypertension	12 (18%)	4 (12%)	9 (13%)	4 (12%)
Lipase increased	11 (16%)	6 (18%)	4 (6%)	3 (9%)
Vomiting	11 (16%)	6 (18%)	0	0

No treatment-related Grade 4 or Grade 5 AEs were reported

516-003 Cohort 1: Efficacy

PD-(L)1-Refractory Platinum-Experienced

Abbreviations: At=atezolizumab; Du=durvalumab; Ni=nivolumab; Pe=pembrolizumab

516-003 Cohort 1: Duration of Therapy

PD-(L)1-Refractory Platinum-Experienced

DURATION OF THERAPY (Evaluable Patients, N=22)

Cohort 1: Case Study #1

- 10/2017: metastatic UC of bladder
- 10/2017: neoadjuvant ddMVAC x 4 cycles
- 2/2018: cystectomy

1/11/2019 (Baseline)

- 9/2018: new lung mets \rightarrow 11/2018: pembrolizumab
- 1/2019: disease progression
 → 2/2019: nivolumab + sitravatinib

9/15/2019 (Wk16): confirmatory PR scan (-50%)

Cohort 1: Case Study #2

- 5/2018: metastatic UC of urethra/prostatic duct
- 7/2018: carboplatin/gemcitabine x 6 cycles
- 1/2019: progression in bone and LNs
 - \rightarrow 11/2018: pembrolizumab

5/2/2019 (Baseline)

5/2019: progression in bone, LNs and innumerable new liver metastases
 → 5/2019: nivolumab + sitravatinib

9/17/2019 (Wk16): confirmatory PR scan (-50%) – remains in PR (-54%)

516-003 Cohort 1 Conclusion

- The combination of sitravatinib with nivolumab is a rational approach to restoring or enhancing the clinical activity of anti-PD-(L)1 CPI in patients with immunotherapy resistant UC
- The combination has an acceptable toxicity profile with manageable AEs
- This ongoing study continues to show promising clinical activity, including tumor regression & prolonged duration on treatment in patients who have progressed following prior CPI
- The study is open at 25 sites in the US & recruitment is ongoing in 7 Cohorts
- Preliminary clinical activity has been seen in several other cohorts, with decisions regarding expansion awaiting for additional enrollment & maturing data

Acknowledgements

- Thank you to all the patients and their families
- Participating study investigators and clinical sites
- This study is sponsored by Mirati Therapeutics, Inc.

