Targeting immune checkpoints in cancer: new insights and opportunities

Suzanne L. Topalian

Johns Hopkins University School of Medicine Sidney Kimmel Comprehensive Cancer Center

SITC 2015 Primer on Tumor Immunology and Cancer Immunotherapy November 5, 2015

Disclosure Information SITC 2015 Suzanne L. Topalian

I have the following financial relationships to disclose:

 Consultant for: Five Prime Therapeutics, GSK, Jounce Therapeutics; and (spouse) Amgen, MedImmune, Merck, Pfizer, Potenza, Sanofi
Grant/Research support from: Bristol-Myers Squibb
Stock/stock options: Five Prime Therapeutics; and (spouse) Jounce Therapeutics, Potenza Therapeutics
Royalties through institution (spouse): BMS, Potenza

- and –

I will discuss the following off label use and/or investigational use in my presentation: anti-PD-1, anti-PD-L1

The walls of cancer's defense against immune attack

Regulatory immune cells

Suppressive cytokines

Immune "checkpoints"

Keir ME et al, Annu Rev Immunol 2008; Pardoll DM, Nat Rev Cancer 2012

Keir ME et al, Annu Rev Immunol 2008; Pardoll DM, Nat Rev Cancer 2012

Keir ME et al, Annu Rev Immunol 2008; Pardoll DM, Nat Rev Cancer 2012

Objective responses induced by anti-PD-1 (nivolumab) are rapid and durable

First signal of activity from anti-PD-1 in NSCLC: first-in-human trial of nivolumab

Immunotherapy landmark: anti-PD-1 is approved for patients with advanced lung cancer

FDA News Release

FDA expands approved use of Opdivo to treat lung cancer

PD-1 pathway blocking mAbs in clinical testing

Target Molecule

Source	PD-1	PD-L1
BeiGene	BGB-A317 (humanized mAb)	N/A
Bristol-Myers Squibb	Nivolumab/BMS-936558/ MDX- 1106/ ONO-4538 (human IgG4)	BMS-936559/MDX-1105 (human IgG4)
CureTech	Pidilizumab/CT-011 (humanized IgG1)	N/A
EMD Serono	N/A	Avelumab, MSB0010718C (human IgG1)
Genentech/ Roche	N/A	Atezolizumab, MPDL3280A (Fc-modified human IgG1)
MedImmune/ AstraZeneca	MEDI0680/AMP-514 (humanized IgG4)	Durvalumab, MEDI4736 (Fc-modified human IgG1)
Merck	Pembrolizumab/MK-3475 (humanized IgG4)	N/A
Novartis	PDR001 (humanized IgG4)	N/A
Regeneron	REGN2810 (human IgG4)	N/A

PD-1 pathway blocking mAbs in clinical testing

Target Molecule

Source	PD-1	PD-L1
BeiGene	BGB-A317 (humanized mAb)	N/A
Bristol-Myers Squibb	Nivolumab/BMS-936558/ MDX- 1106/ ONO-4538 (human IgG4)	BMS-936559/MDX-1105 (human IgG4)
CureTech	Pidilizumab/CT-011 (humanized IgG1)	N/A
EMD Serono	N/A	Avelumab, MSB0010718C (human IgG1)
Genentech/ Roche	N/A	Atezolizumab, MPDL3280A (Fc-modified human IgG1)
MedImmune/ AstraZeneca	MEDI0680/AMP-514 (humanized IgG4)	Durvalumab, MEDI4736 (Fc-modified human IgG1)
Merck	Pembrolizumab/MK-3475 (humanized IgG4)	N/A
Novartis	PDR001 (humanized IgG4)	N/A
Regeneron	REGN2810 (human IgG4)	N/A

Phase 3 trial results: Improved overall survival in patients with metastatic melanoma receiving first-line anti-PD-1 (nivolumab) vs. chemotherapy

Robert et al., NEJM 2014

Drugs blocking PD-1/PD-L1 are active against multiple cancer types

Durable objective tumor regressions in patients with:

- Melanoma (17-50% of patients responding)
- Lung cancer (10-30%)
- Kidney cancer (12-29%)
- Bladder cancer (25%)
- Ovarian cancer (6-23%)
- Head and neck cancer (14-25%)
- Hodgkin's lymphoma (87%)
- Gastric cancer, TNBC, HCC, mesothelioma, ...

Drugs targeting a single molecular pathway have an unprecedented activity spectrum and provide a "common denominator" for cancer therapy

The immune synapse

On the horizon: multiple opportunities to enhance antitumor immunity

A complex series of receptor-ligand interactions modulating immune cell activity are druggable

Can cancer genetics guide immunotherapy?

Does mutational load correlate with responsiveness to immune checkpoint blockade?

Lawrence et al., Nature 2013

Altered proteins contain neoepitopes for immune recognition

Preliminary findings: Mutational load in NSCLC correlates with response to anti-PD-1 (pembrolizumab) therapy

Somatic exomic mutations create new proteins potentially recognized by the immune system *Rizvi, Chan et al., Science 2015*

Colorectal cancers are generally unresponsive to PD-1 blockade, but the MSI-high subset has a high mutational burden

Microsatellite instability (MSI): genetic hypermutability resulting from deficient mismatch repair (dMMR), present in ~15% colon cancers and in some other tumor types

"Exceptional responder": Complete response of metastatic colorectal cancer to anti-PD-1 therapy

Lipson et al., Clin Cancer Res 2013

<u>History</u>: 71-yr-old male had disease progression following multiple chemotherapies, bevacizumab, cetuximab.

Anti-PD-1 (nivolumab) therapy started in 2007, 5 doses over 9 months. Patient disease-free and off therapy since 2008.

Tumor genotype MSI-high

Genetic subsetting predicts response to anti-PD-1 therapy

(Le, Diaz, et al., ASCO 2015 and NEJM 2015)

QUESTION:

Can immunological factors provide crosscutting biomarkers for clinical response to checkpoint blockade? Preliminary correlation of PD-L1 expression in pre-treatment tumor biopsies, with clinical response to anti-PD-1 therapy

⁴⁹ patients include 20 with melanoma,13 NSCLC, 7 colon, 6 kidney, and 3 prostate cancer (updated from Topalian et al., NEJM 2012)

Pre-treatment tumor PD-L1 expression correlates with response to anti-PD-1 (pembrolizumab) in NSCLC: individualizing treatment strategy

Garon et al., NEJM 2015

- Response rate 45%
- Median survival not reached
- < 50% tumor cells PD-L1+
 - Response rate 11-17%
 - Median survival 8.8 months

Pre-treatment tumor PD-L1 expression correlates with response to anti-PD-1 (pembrolizumab) in NSCLC: individualizing treatment strategy

Garon et al., NEJM 2015

Oct. 2015: two PD-L1 IHC assays approved by FDA as diagnostics for anti-PD-1 therapy in lung cancer

Tumor infiltrating lymphocytes at the interface with PD-L1+ tumor cells secrete cytokines that drive PD-L1 expression

Multiple cell types in the tumor microenvironment can express PD-L1

Melanoma cells
Macrophages
Lymphocytes

Tumeh, Ribas, et al., Nature 2014

TILs from PD-L1(+) vs. (-) melanomas: functional groups of differentially expressed genes and potential treatment resistance pathways

(Taube, Topalian et al., Clin Cancer Res 2015)

Viral antigens are foreign to the immune system and should be strong immune stimulants in virus-associated cancers

QUESTIONS:

- Do virus-associated cancers over-express PD-L1, PD-1, and other immunosuppressive ligands/receptors?
- Are virus-associated cancers responsive to anti-PD-1 therapy?
- Do viral antigens provide biomarkers for clinical response?

"Interface" PD-L1 expression in oropharyngeal SCCHN: association with HPV, TILs, and IFN-g

Lyford-Pike, Pai et al., Cancer Res 2013

Response in patient with head and neck cancer receiving anti-PD-L1 (MEDI4736) therapy

Baseline

- 96 y.o. female
 - Progressed on previous cetuximab
 - HPV negative, PD-L1 positive
 - Treatment ongoing at 8 weeks

Preliminary response rate 14% in patients with advanced SCCHN.

Presented by: Neil Howard Segal, ASCO 2014

Day 28

PD-L1 expression in Merkel cell Ca: association with MCPyV, CD8+ TILs, and overall survival

Lipson et al., Cancer Immunol Res 2013

Interim data: response of MCC to anti-PD-1 (pembrolizumab)

^{*}Complete responses (RECIST 1.1) occurred in lymph nodes that regressed to < 10 mm.

Finding synergistic treatment combinations: PD-L1 expression as a guide to prioritizing clinical testing

Can post-treatment enhancement of tumor PD-L1 expression identify immunogenic cancer therapies that could be combined effectively with anti-PD-1/PD-L1?

Therapeutic implications for PD-1 pathway blockade in adaptive resistance model

Fu, Kim, et al., Cancer Res 2014

Conclusions

- Monotherapy with anti-PD-1/PD-L1 is a "common denominator" for treating diverse cancer types
- Immunologic, genetic and viral biomarkers can guide the "personalized" application of these drugs
- Tumor markers can guide combination therapies to enhance the impact of anti-PD-1/PD-L1 and render "resistant" tumors sensitive to treatment
- Preclinical research can provide the evidence needed to prioritize treatment combinations for clinical testing

Thanks to collaborating clinical trial centers. Supported by BMS, Melanoma Research Alliance, NCI, SU2C-AACR-CRI, Barney Fdn., and others