

CAR T Therapy for AML

Elizabeth Budde, MD, PhD

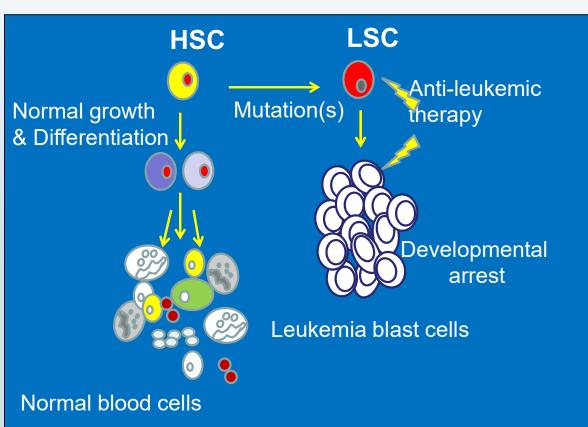
Department of Hematology & HCT Beckman Research Institute City of Hope National Medical Center Duarte, CA

DISCLOSURES

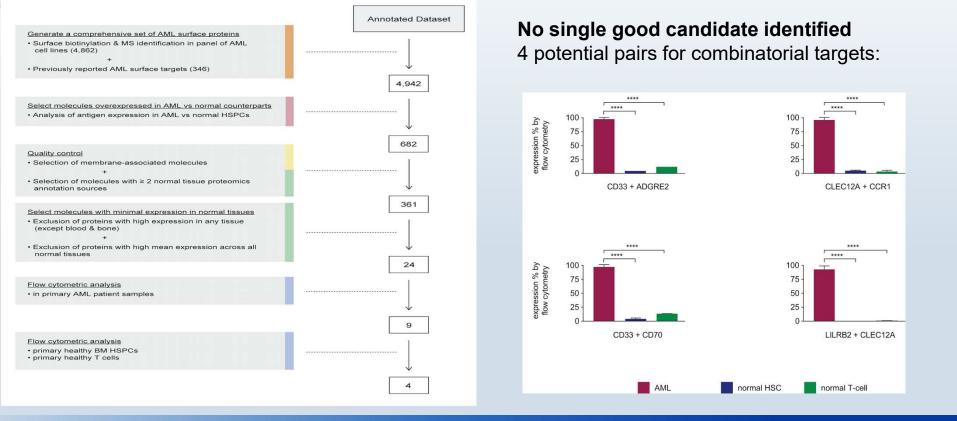
Research supports: Mustang Therapeutics, AstraZeneca, Amgen, Inc, Merck & Co.

Advisory board/Consultancy: Roche/Genentech Inc, Gilead Inc.

Objectives


- To overview the current landscape and limitations of CAR T therapy for AML
- To consider potential ways to improve the efficacy and safety of using CAR T cells for AML

CAR T Cell Development for AML Is Still at the Starting Line


Major Challenge in Acute Myeloid Leukemia

Ideal cell based antigen target:

- only on leukemic cells
- Shared by most if not all AML patients
- Not on any normal tissue/cell

AML Surface Antigens for CAR-based Cell Therapy ?

Perna et al., Cancer Cell (2017)

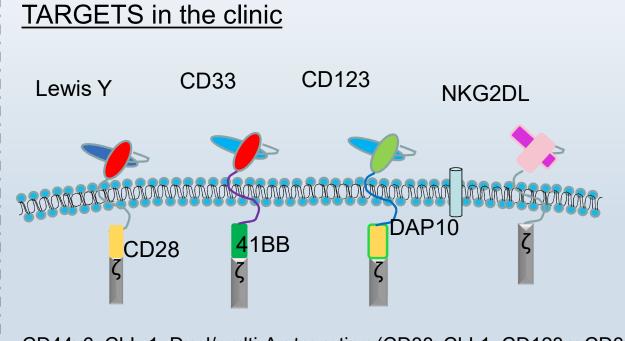
Major Challenge in Acute Myeloid Leukemia

Ideal cell therapy target:

yet to be identified

- Clonal heterogeneity of LSCs.
- Similarity of LSCs with normal stem cells.
- Lack of antigens with lineage specific expression.

High risk for on-target, off leukemic effects



CAR T Based Cellular Therapy Targets for AML

TARGETS (preclinical)

CD7, CD25, CD32, CD33, CD38, CD44v6, CD47, CD117, CD123, FLT-3, TIM3, IL-1RAP, Lewis Y, CLL-1, Folate R-b, MUC-1, NKG2D, WT-1, and more

- CD44v6, CLL-1, Dual/multi-Ag targeting (CD33xCLL1, CD123 x CD33, etc)

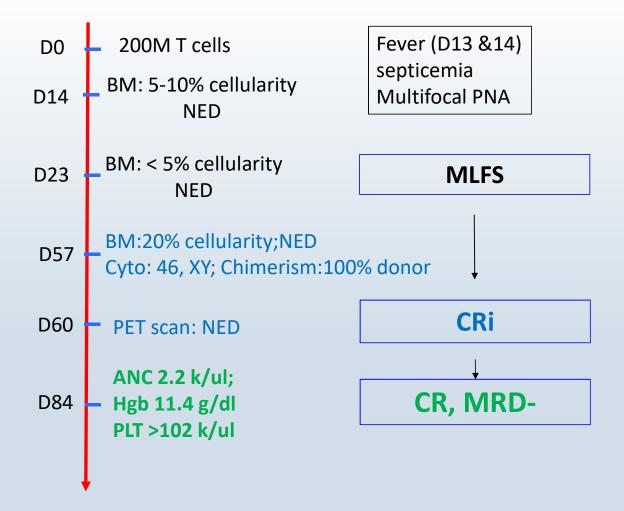
CAR T Cell Trials for R/R AML (an Incomplete List)

Targets	Ref.	CAR	T cell	Pt. Age	Lympho	CAR T	Activities and relevant
			source		depletion	dose	AEs
Lewis Y	NCT01716364	Retrovirus CD28	auto	≥ 18 y.o.	Flu/Cytarabine	1.48 to 9.2x10 ⁸	1 pt achieved cytogenetic CR N=4
NKG2DL	NCT02203825	Retrovirus DAP10	auto	≥ 18 y.o.	no	7.38x10 ⁵ to 2.45 x10 ⁷	No DLT; no responders N=7
	NCT03018405	Retrovirus DAP10	auto	≥ 18 y.o.	no	3x10 ⁸ to 3 x10 ⁹ (up to 6 doses)	No DLT; 1CRh, 2CRi N=10
CD33	NCT01864902	Lentivirus 4-1BB	Auto or allo	5-90 y.o	No	4.25x 10 ⁸	Transient Blast reduction >50% to <6% at 2 weeks N=1
CD33	NCT03971799	Lentivirus 4-1BB	auto	1-35 у.о	Flu/Cy	3x10 ⁵ /kg	n/a

Ritchie et al. Mol Ther 2013; Wang et al. Mol Ther 2013; Wang et al. Mol Ther 2015; Baumeister et al. Cancer Immuno Res 2019; Sallman et al. ASH 2018; Liu et al. ASH 2018;

CD123CAR T Trials for R/R AML in North America

	costim	Gene delivery	T cell source	dose	Status
NCT02159495 COH	CD28	lentivirus	allo or auto	50-500M	active
NCT02623582 Penn	4-1BB	mRNA electroporation	auto	4x10 ⁶ /kg x 4 4x10 ⁶ /kg x 6	Terminated 10.2017
NCT03190278 Cellectis	4-1BB	lentivirus	universal donor (UCART)	6.25x 10 ⁴ /kg to 6.25 x10 ⁶ /kg	Terminated reopened
NCT03766126 Penn	4-1BB	lentivirus	auto	2x10 ⁶ /kg 10%/30%/60%	Opened 2.2019



Case #2: UPN263

36 y.o F with refractory AML

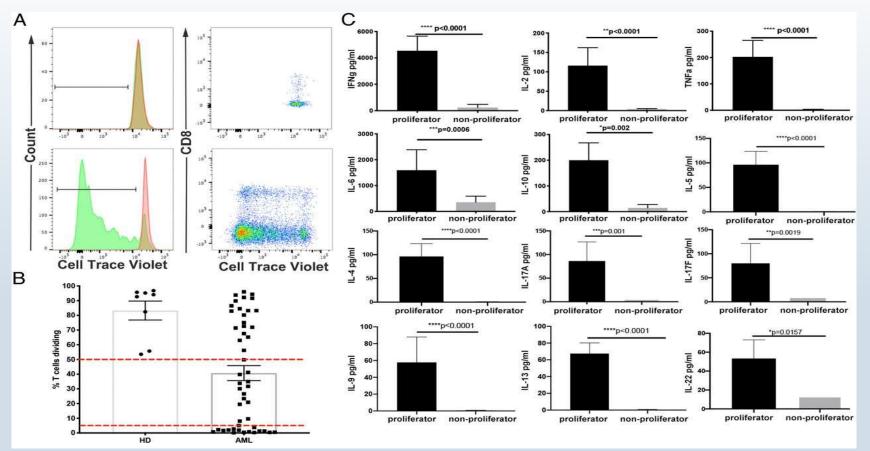
- 10 prior lines of therapies
- 2 prior allogeneic transplant.
- Relapse 3 months post 2nd alloHCT
- BM 27% blasts, Cyto: 45,XX, inv(3)(q21q26.2), -7, t(9;22)(q34;q11.2)
- + right tibia, hard palate

Budde: CD123 Trial

Limitations of the current CAR T for AML

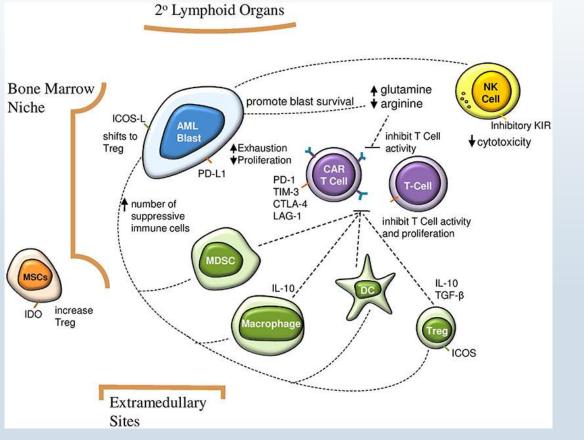
1. Rel/Ref AML patients represent a challenging population to manage.

Product#	CAR Infusion	Reason for
87%	47% (7/15)	no CAR T infusion
UPN128	No	Infection/disease progression, deceased
UPN136	Yes	_
UPN138	Yes	-
UPN139	No	Disease progression, deceased
UPN154	No	Disease progression, deceased
UPN162	No	MRD-ve
UPN167	Yes	-
UPN175	No	Sepsis, deceased
UPN178	Yes	-
UPN190	No	Sepsis, deceased
UPN195	Yes	-
UPN200	Yes	-
UPN203	Yes	-
UPN212	No	Failed leuk product & CNS progression
UPN236	No	Failed leuk product & CNS progression
		Budde, unpub



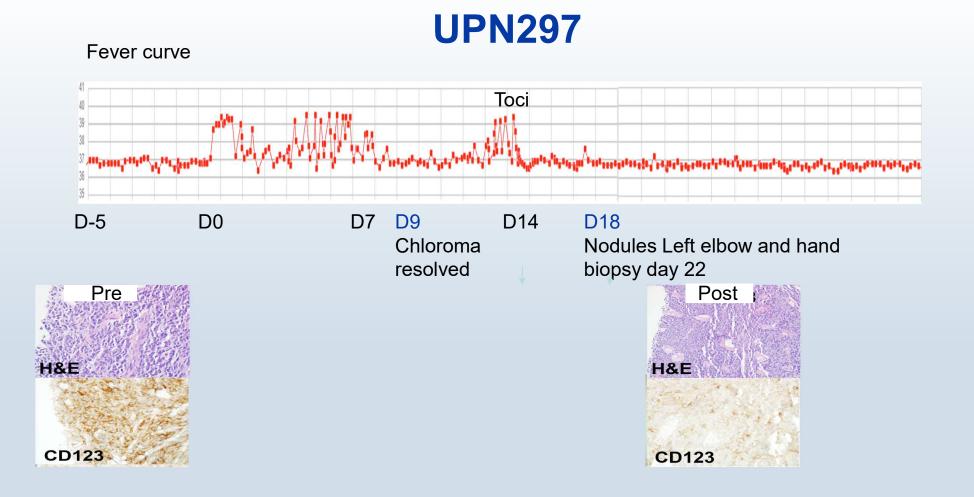
Limitations of the current CAR T for AML

- 1. Rel/Ref AML patients represent a challenging population to manage.
- Suppressive immune system in patients with active AML Unfit T cells TME



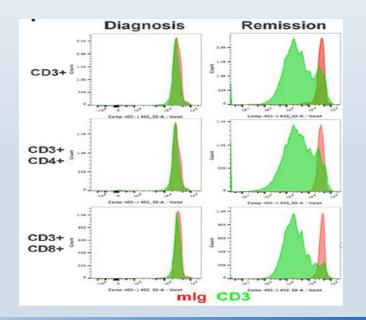
Adam J. Lamble et al. PNAS 2020;117:25:14331-14341

AML: Suppressive Microenvironment


Epperly R , Gottschalk S and Velasquez. Front Oncol., 2020

Limitations of the current CAR T for AML

- 1. Rel/Ref AML patients represent a challenging population to manage.
- 2. Suppressive immune system in patients with active AML
- 3. Clonal evolution of AML blasts

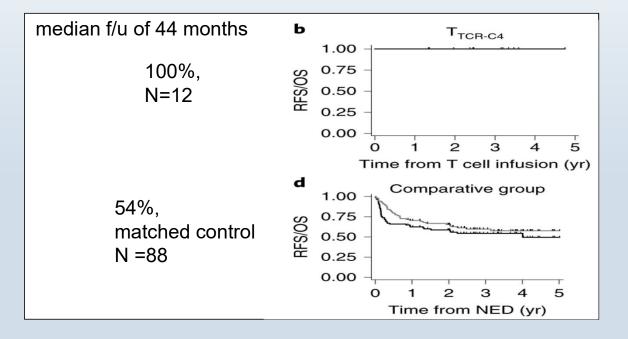

Budde unpublished

Ways to Improve CAR T Therapy for AML

Patient selection

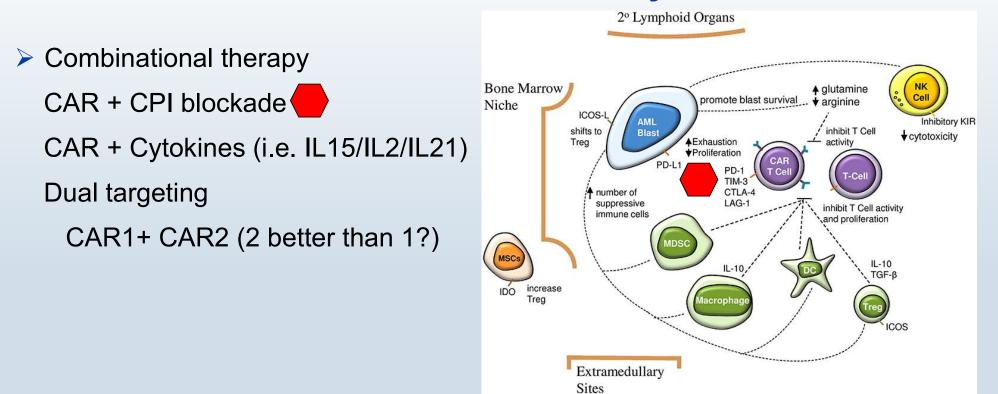
Collect immune cells from high risk AML patients in remission

- Treat when AML progression occurs
- Maintenance therapy


Adam J. Lamble et al. PNAS 2020;117:25:14331-14341

TCR Based Cell Therapy

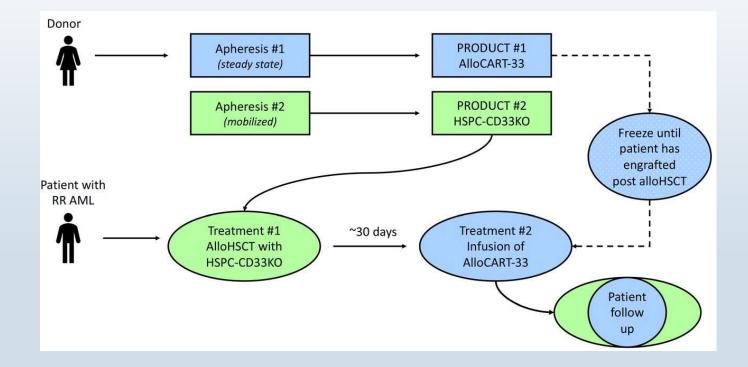
NCT01640301 (FHCRC)


Patients: AML, poor risk, post HCT with NED HLA-A*0201⁺ donor derived EBV-specific WT-1 T (T_{TCR-C4}) cells

Chapuis et al. Nature Med 25, 1064:1-72 (2019)

Ways to Improve CAR T Therapy for AML: Increase Potency

Ways to Improve CAR T Therapy for AML: Toxicity Mitigation


How to overcome potential myeloablation

- build in conditional switch ?
- generate CAR T resistant HSCs (Penn)

Adam J. Lamble et al. PNAS 2020;117:25:14331-14341

A novel therapeutic platform: combining HSPC-CD33KO with CD33CART therapy.

Katherine D. Cummins, and Saar Gill Haematologica 2019;104:1302-1308

Ways to Improve CAR T Therapy for AML

- How to overcome potential myeloablation
 - build in conditional switch (icaspase, EGFRt, CD20...)
 - generate CAR T resistant HSCs
 - use CAR T as a bridge and conditioning regimen

Compound CARs targeting CLL-1 and CD33

	<u>Study design</u> Cell product: Autologous CLLCAR/CD33CAR 3 dose levels: 1x10 ⁶ /kg, 3x10 ⁶ /kg, 9x10 ⁶ /kg				
ζ LL-1scFv-CD28	6 yo F with AML Day 19 Day 21 Day 29 empty marrow NMA conditioning Haplo HSCT → CR				
P2A CD33scFv-41BB	23 yo AP-CML Day 20 Day 24 Day 32 CR empty marrow NMA conditioning Haplo HSCT CR				

С

Liu et al. ASH 2018; EHA 2020

Ways to Improve CAR T Therapy for AML: Increase Feasibility and Affordability

allogeneic off the shelf product

Allo-CAR T (UCAR, PBCAR), iPSC-CAR NK/T, NK-CAR,,...

- low cost, massive production, immediate availability
- Need to demonstrate efficacy and durability

Conclusion and Future Directions

- > Engineered cell therapy for AML is still at very early stage.
- CD123CAR, NKG2D CAR T and WT1 TCR T cell therapy for AML demonstrated the feasibility, safety and encouraging activity.
- An effective engineered cell therapy for AML requires understanding the mechanism of action, cell product optimization (design & manufacturing platform), smart combinations, and answering the needs of patients.

Acknowledgments

TCTRL Program

Budde Laboratory

Marissa Del Real Candida Toribio Sonia Setayesh James Xue Emanuela Marcucci Joyce Kim Manufacture Team Steven Lin & Araceli Naranjo QC& Correlatives Team Jinny Paul, PhD Regulatory Team Jamie Wagner Biostatistics Team

Suzette Blanchard, PhD

Stephen Forman, MD (lead) Christine Brown, PhD (co-lead) Larry Stern, PhD Xiuli Wang, MD, PhD Sandra Thomas, PhD Julie Ostberg, PhD Wen-Chung Chang Armen Mardiros, PhD (former)

Thank you: Patients and their Families

COH Clinical TeamCollabJoo Song, MDBrent YYoung Kim, MDUniv. CScott Fitzgerald, CRNMsgana Tamrat, CRCAlpha Clinic teamAll Leukmeia disease teamProvidersGuido Marcucci, MDAnthony Stein, MDFunding:

Collaborator

Brent Wood, MD, PhD, Univ. of Washington

- •Damon Runyon Cancer Research Foundation
- •Leukemia & Lymphoma Society
- •CIRM Alpha Clinic
- •Cancer Center Support Grant (P30CA33572)
- •Leslie Frankenheimer Leukemia Research
- Mustang Bio, Inc. Research support

