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= Central Dogma in ICT
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w Cytokine release

Sharma et. al., Cancer Discov. (Special Anniversary Issue) 2021 Apr;11(4):838-857

v ICT can provide durable clinical responses

v Improve overall survival
v" Works only in few patients
v Patient develop resistance
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= Cancer Immunity Cycle

A complex set of tumor, host and environmental factors govern strength

and timing of anti-cancer immune responses.
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_mm Focus Areas in the Coming Decade in the Field of ICT

Further understanding of mechanisms of
primary and adaptive resistance to ICT

Development of robust predictive biomarkers for

optimal patient selection
® 00 00 ‘l.

Integration of newer technologies to obtain deeper

biological insights The

next
decade
of ICT

Mechanistic and clinical understanding of irAEs

Incorporation of reverse translational strategies to
develop rational combinations
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- Biomarkers of Response and Resistance to ICT
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= |ntroduction: Workflow Overview
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=a |[ntroduction: Analysis overview
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Slovin S. et al. (2021) Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview. In: Picardi E. (eds) RNA Bioinformatics. Methods in Molecular Biology, vol 2284. Humana, New York, NY. ? I [ I
https://doi.org/10.1007/978-1-0716-1307-8_19



=a |[ntroduction: Analysis overview
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=a |[ntroduction: Analysis overview
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=a |[ntroduction: Analysis overview
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=a |[ntroduction: Analysis overview
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=a |[ntroduction: Analysis overview
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= Sourat: Great Place to Start for Single Cell
Analysis

Guided tutorial — 2,700 PBMCs
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A basic overview of Seurat that includes
an introduction to common analytical
workflows.
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= Sourat: Great Place to Start for Single Cell

Analysis

Get started Extensions FAQ News Reference Archive

Seurat {408  Install

Vignettes ~

Seurat - Guided Clustering Tutorial

Compiled: January 11, 2022

Source: vignettes/pbmc3k_tutorial.Rmd

Setup the Seurat Object

For this tutorial, we will be analyzing the a dataset of Peripheral Blood Mononuclear Cells (PBMC) freely available from 10X
Genomics. There are 2,700 single cells that were sequenced on the lllumina NextSeq 500. The raw data can be found here.

We start by reading in the data. The Read10X() function reads in the output of the cellranger pipeline from 10X, returning a
unique molecular identified (UMI) count matrix. The values in this matrix represent the number of molecules for each feature
(i.e. gene; row) that are detected in each cell (column).

We next use the count matrix to create a Seurat object. The object serves as a container that contains both data (like the count
matrix) and analysis (like PCA, or clustering results) for a single-cell dataset. For a technical discussion of the Seurat object
structure, check out our GitHub Wiki. For example, the count matrix is stored in pbmc [ ["'RNA"]]@counts .

library(dplyr)
library(Seurat)
library(patchwork)

# Load the PBMC dataset

pbmc.data <- Read1@X(data.dir = "../data/pbmc3k/filtered_gene_bc_matrices/hg19/")

# Initialize the Seurat object with the raw (non-normalized data).

pbmc <- CreateSeuratObject(counts = pbmc.data, project = "pbmc3k", min.cells = 3, min.features =
pbmc

https://satijalab.org/seurat/articles/pbmc3k_tutorial.html

20

Contents

Setup the Seurat Object
Standard pre-processing workflow
Normalizing the data

Identification of highly variable
features (feature selection)

Scaling the data

Perform linear dimensional
reduction

Determine the ‘dimensionality’ of
the dataset

Cluster the cells

Run non-linear dimensional
reduction (UMAP/tSNE)

Finding differentially expressed
features (cluster biomarkers)

Assigning cell type identity to
clusters
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Single Cell Multi-Omics: The Data Challenges
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=mm Single Cell Analysis: Seurat is a Great Place to

Start

Introductory Vignettes

For new users of Seurat, we suggest starting with a guided walk through of a dataset of 2,700 Peripheral Blood Mononuclear Cells
(PBMCs) made publicly available by 10X Genomics. This tutorial implements the major components of a standard unsupervised
clustering workflow including QC and data filtration, calculation of high-variance genes, dimensional reduction, graph-based
clustering, and the identification of cluster markers.

We provide additional introductory vignettes for users who are interested in analyzing multimodal single-cell datasets (e.g. from
CITE-seq, or the 10x mulitome kit), or spatial datasets (e.g. from 10x visium or SLIDE-seq).

Guided tutorial — 2,700 PBMCs

SR

3
200000000
L 3
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A basic overview of Seurat that includes
an introduction to common analytical
workflows.

Multimodal analysis

An introduction to working with multi-
modal datasets in Seurat.

Analysis of spatial datasets

Learn to explore spatially-resolved
transcriptomic data with examples from
10x Visium and Slide-seq v2.

https://satijalab.org/seurat
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= Single Cell A
Start

https://satijalab.org/seurat

nalysis: Seurat is a Great Place to

Data Integration

Recently, we have developed computational methods for integrated analysis of single-cell datasets generated across different

conditions, technologies, or species. As an example, we provide a guided walk through for integrating and comparing PBMC
datasets generated under different stimulation conditions. We provide additional vignettes demonstrating how to leverage an
annotated scRNA-seq reference to map and label cells from a query, and to efficiently integrate large datasets.

Introduction to scRNA-seq

integration

An introduction to integrating scRNA-
seq datasets in order to identify and
compare shared cell types across
experiments.

Mapping and annotating query

Fast integration using reciprocal

datasets

Learn how to map a query scRNA-seq
dataset onto a reference in order to
automate the annotation and
visualization of query cells.

PCA (RPCA)

Ty

Identify anchors using the reciprocal
PCA (rPCA) workflow, which performs a
faster and more conservative
integration.

Tips and examples for integrating very
large scRNA-seq datasets (including
>200,000 cells).

Integrating scRNA-seq and

Multimodal Reference Mapping

scATAC-seq data

=
R
AJ- 7
§-
’

-~

Annotate, visualize, and interpret an
scATAC-seq experiment using scCRNA-
seq data from the same biological
system.

CD16 Mono

Analyze query data in the context of
multimodal reference atlases.
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=mm Single Cell Analysis: Seurat is a Great Place to

Start

https://satijalab.org/seurat

Additional New Methods

Seurat also offers additional novel statistical methods for analyzing single-cell data. These include:

* Weighted-nearest neighbor (WNN) analysis: to define cell state based on multiple modalities [paper]
* Mixscape: to analyze data from pooled single-cell CRISPR screens [paper]
* SCTransform: Improved normalization for single-cell RNA-seq data [paper]]

* SCTransform, v2 regularization [paper]]

Weighted Nearest Neighbor
Analysis

RNA Modality Weights

AREY |

Analyze multimodal single-cell data
with weighted nearest neighbor
analysis in Seurat v4,

Mixscape

‘QQDQSQB

Explore new methods to analyze pooled
single-celled perturbation screens.

SCTransform

Examples of how to use the
SCTransform wrapper in Seurat.

SCTransform, v2 regularization

Yl £ !
/ /

e
i

Examples of how to perform
normalization, feature selection,
integration, and differential expression
with an updated version of sctransform.
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=mm Single Cell Analysis: Seurat is a Great Place to

Start

https://satijalab.org/seurat

Other

Here we provide a series of short vignettes to demonstrate a number of features that are commonly used in Seurat. We've focused

the vignettes around questions that we frequently receive from users. Click on a vignette to get started.

Visualization

An overview of the major visualization
functionality within Seurat.

Cell Cycle Regression

Mitigate the effects of cell cycle
heterogeneity by computing cell cycle
phase scores based on marker genes.

Differential Expression Testing

Perform differential expression (DE)
testing in Seurat using a number of
frameworks.

Demultiplex Cell Hashing data

Interoperability with Other

Learn how to work with data produced
with Cell Hashing.

Analysis Tools

| “‘
dBecsnducy scanpy s

Seurat

* LOOM

Convert data between formats for
different analysis tools.

Parallelization

Speed up compute-intensive functions
with parallelization.
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=mm Single Cell Analysis: Seurat is a Great Place to
Start

SeuratWrappers

Inorder he use of ools with Seurat, we pr Seurat Wrappers package. which contains code to run

other analysis tools an Sewrat objects. For lease, we provide for a few packages in the table below but would
rage d nterested Seurat to check cut our contributor guide here.

Package  Vignette Reference Source

alevin mportalevincounts  Srivastavaet.  https:igithub com/k3yaviialevin-Rtools

Seur.

3, Genome
ology 2019

ALRA Undermanet  https:/github com/KlugerLab/ALRA

CoGAPS  Running CoG
Seurat Objects

https:/fwanw.bloconductor.arg/packsgesirelease/bioc/html/CaGAPS htm

hetps:igithub com/hms-dben

fastMNN  RunningfastMNNon  Haghverdiet  https:/biccong
Seurat Objects 3, Nature
Biotechnology

or.crg/packagesirelease/bioc/tm

pimpca  Running GLM-PCAona JTownesetal,  https:igithub com/wiltownes/gimpca

Harmony  Integration of datasets https:igithub com/immunogenomicsharmony

sing Harmor

LIGER o

grating Seurat

ts using LIGER

Monocled  Caloulating Trajectories
e 3and

Nebulosa
schex
scVelo Estr g ANA https: re
ity using Se
ar
Velocity Est ocytoorg
\elocity using Seurat
CIPR Using CIPR with human https:/gehub com/at
PBM
miQeC Running miQC on Hipoenet.al, github comgreenclabimiQC
Seurat cbjects bloRxiv 202
tricyde heml/tricycie html

Zenget https:\fwww.bloc

bi

https://satijalab.org/seurat il I I: I



Single Cell Multi-Omics: The Data Challenges
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== Challenges in Single Cell Data Analysis

Genome Biology e

Home About Articles Submission Guidelines

Review | Open Access | Published: 07 February 2020

Eleven grand challenges in single-cell data science

David Léhnemann, Johannes Kdster, [...] Alexander Schénhuth

Genome Biology 21, Article number: 31 (2020) | Cite this article

36k Accesses | 26 Citations I 288 Altmetric | Metrics
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=a Challenge I: Handling Sparsity in Single-Cell RNA
Sequencing

scRNA-seq measurements typically suffer from large fractions of observed zeros,
where a given gene in a given cell has no unique molecular identifiers or reads
mapping to it.

« Sparsity pervades all aspects of scRNA-seq data analysis.

« The term “dropout” is often used to denote observed zero values in scRNA-seq data.
But this term usually conflates two distinct types of zero values: those attributable to
methodological noise, where a gene is expressed but not detected by the sequencing
technology, and those attributable to biologically-true absence of expression.

« In general, two broad approaches can be applied to tackle this problem of sparsity: (i)
use statistical models that inherently model the sparsity, sampling variation, and noise
modes of scRNA-seq data with an appropriate data generative model (i.e., quantifying
uncertainty or (ii) attempt to “impute” values for observed zeros (ideally the technical
zeros; sometimes also non-zero values) that better approximate the true gene
expression levels.

ricl
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[ Challenge II: Defining Flexible Statistical Frameworks for
Discovering Complex Differential Patterns in Gene
Expression

« Beyond simple changes in average gene expression between cell
types (or across bulk-collected libraries), scRNA-seq enables a high
granularity of changes in expression to be unraveled.

« Most methods have focused on comparing average expression
between groups

« The vast majority of differential expression detection methods assume
that the groups of cells to be compared are known in advance

* While some methods exist to identify more general patterns of gene
expression changes (e.g., variability, distributions), these methods
could be further improved by integrating with existing approaches that
a]cc:fcount for confounding effects such as cell cycle and complex batch
effects.

ricl
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L Single Cell Application: Time Series in Disease and Tumors +
Cell States

d Atlasing b cel trajectory C Pathway Inference

Progenitor Tubule epithelium Progenitor Tubule epithelium

|

-->Pathway

Control

Trajectory B

-->Pathway

Kidney International Volume 96, Issue 4, October 2019, Pages 862-870
https://doi.org/10.1016/j.kint.2019.03.035



https://doi.org/10.1016/j.kint.2019.03.035

= Disease Associated Cell Types

d Single-cell assessment of disease states

Healthy control
J scRNA-seq
Align and
analyse —»
jointly
Disease

e o o _/
? scRNA-seq

141

Stewart et al. Nature reviews nephrology (2019)

UMAP 1

Cell types and states

UMAP 1

Disease vs health

Cell type-specific  Upin
disease signature  disease

P

Significance
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~0000060

+M+C

scDNA-seq

clonal

Integration

Example MT
combination

Example AMs

Promises

1.Abbreviations: “|” same challenge also applies to all approaches
below, AM analysis method, exp(s) experiment(s), HCA human

cell atlas, MT measurement type, smps samples, TCGA The

Cancer Genome Atlas

Challenges

1s

+S

+X+S

+M1C

+M+C

+all

None

Within 1 MT, within 1 exp, across
>1smps

Within 1 MT, across >1 exp,
across >1 smps

Across >1 MTs, within 1 exp,
within 1 cell

Across >1 MTs, within 1 exp,
across >1 cells, within 1 cell pop

Across >1 MTs, across >1 exps,
across >1 smps, within cells

scDNA-seq

scRNA-seq

merFISH

scM&T-seq (SCRNA-seq
+ methylome)

scDNA-seq + SCRNA-
seq

Hypothetical (any
combination)

Genome Biology volume 21, Article number: 31 (2020)

Clustering/unsupervised
Differential analyses, time series, spatial
sampling

Map cells to stable reference (cell atlas)

MOFA, DIABLO, MINT

Cardelino, Clonealign, MATCHER

Hypothetical (map cells to multi-omic
HCA, single-cell TCGA)

Discover new subclones, cell types,
or cell states

Identify effects across sample
groups, time, and space

Accelerate analyses, increase sample
size, generalize observations

Holistic view of cell state; quantify
dependency of MTs

Use existing datasets (faster than
+M1C); flexible experimental design

Holistic view of biological systems

Technical noise ¥; data sparsity ¥

Batch effects {; validate cell type
assignments ¥

Standards across experimental centers

Scaling cell throughput; MT
combinations limited; dependency of
MTs ¥

Validate cell/data matching; test
assumptions for integrating data

All from approaches +X+8S, +M1C, and
+M+C
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- A benchmark of batch-effect correction methods for

single-cell RNA sequencing data

Raw Seurat 2 Seurat 3

UMAP 2

scGen Scanorama MMD-ResNet

&

UMAP 2

Genome Biology volume 21, Article number: 12 (2020)

Harmony

ZINB-WaVE

UMAP 1

fastMNN MNN Correct

R H W
& W

scMerge LIGER

&

ComBat

BBKNN

limma

Batch

© Batch1_Drop-seq
® Batch2_SPLiT-seq

Cell Type

© Astrocyte

©® Choroid plexus

©® Endothelial

® Ependymal

® Macrophage

® Microglia

® Mitotic
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=2 Challenge lll: Mapping Single Cells to a
Reference Atlas

« Classifying cells into cell types or states is essential for many
secondary analyses. As an example, consider studying and
classifying how expression within a cell type varies across different
biological conditions.

« A computationally and statistically sound method for mapping cells
onto atlases for a range of conceivable research questions will need
to (i) enable operation at various levels of resolution of interest, and
also cover continuous, transient cell states (ii) quantify the uncertainty
of a particular mapping of cells of unknown type/state (iii) scale to
ever more cells and broader coverage of types and states and (iv)
eventually integrate information generated not only through scRNA-
seq experiments, but also through other types of measurements, for
example, scDNA-seq or protein expression data

CONFIDENTIAL — Do Not Distribute | ? I [ I
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-a Challenge |V: Generalizing Trajectory Inference

« Several biological processes, such as differentiation, immune response, or cancer
expansion, can be described and represented as continuous dynamic changes in cell
type/state space using tree, graphical, or probabilistic models. A potential path that a
cell can undergo in this continuous space is often referred to as a trajectory

« Trajectory inference is in principle not limited to transcriptomics. Nevertheless,
modeling of other measurements, such as proteomic, metabolomic, and epigenomic, or
even integrating multiple types of data is still at its infancy.

« We believe the study of complex trajectories integrating different data types, especially
epigenetics and proteomics information in addition to transcriptomics data, will lead to a
more systematic understanding of the processes determining cell fate.

» Trajectory methods start from a count matrix where genes are rows and cells are
columns. First, a feature selection or dimensionality reduction step is used to explore a
subspace where distances between cells are more reliable. Next, clustering and
minimum spanning trees, principal curve or graph fitting, or random walks and diffusion
operations on graphs are used to infer pseudo time and/or branching trajectories.
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L Single Cell Application: Time Series in Disease and Tumors +
Cell States

d Atlasing b cel trajectory C Pathway Inference

Progenitor Tubule epithelium Progenitor Tubule epithelium

|

-->Pathway

Control

Trajectory B

-->Pathway

Kidney International Volume 96, Issue 4, October 2019, Pages 862-870
https://doi.org/10.1016/j.kint.2019.03.035
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== Challenge V: Finding patterns in spatially
resolved measurements

« Single-cell spatial transcriptomics or proteomics technologies can obtain transcript
abundance measurements while retaining spatial coordinates of cells or even
transcripts within a tissue. With such data, the question arises of how spatial

information can best be leveraged to find patterns, infer cell types or functions, and
classify cells in a given tissue.

« The central problem is to consider gene or transcript expression and spatial
coordinates of cells, and derive an assignment of cells to classes, functional groups, or
cell types. Depending on the studied biological question, it can be useful to constrain
assignments with expectations on the homogeneity of the tissue.

ricl
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-2 Single Cell Sequencing: Adding Spatial
Component

A dimensional comparison of bulk, single-cell, and spatial analyses. [10x Genomics]
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= - merging Spatial-seq Technologies
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_mm Main Steps in Image Analysis

Spatial proteomics
Image mass cytometry (IMC)
Muitiplexed ion beam imaging (MIBI)
CODEX

Cell Segmentation

Image Processing
(QPTIFF)

Cell
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Cellular
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Spatial transcriptomics

<~ Molecular
i+« interactions
i
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Genome Biology volume 21, Article number: 31 (2020)

Challenge VI:. Dealing with errors and missing data in the
identification of variation from single-cell DNA sequencing data

The aim of scDNA-seq usually is to track somatic
evolution at the cellular level, that is, at the finest
resolution possible relative to the laws of reproduction.
Examples are identifying heterogeneity and tracking
evolution in cancer, as the likely most predominant
use case, but also monitoring the interaction of
somatic mutation with developmental and
differentiation processes.

To track genetic drifts, selective pressures, or other
phenomena inherent to the development of cell clones
or types—but also to stratify cancer patients for the
presence of resistant subclones—it is instrumental to
genotype and also phase genetic variants in single
cells with sufficiently high confidence.
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=2 Challenge VI: Dealing with errors and missing
data in the identification of variation from single-
cell DNA sequencing data

Potential improvements in this area include (i) more
explicit accounting for possible scDNA-seq error
types, (ii) integrating with different data types with
error profiles different from scDNA-seq (e.g., bulk
1 1000 sequencing or RNA sequencing), or (iii) integrating

further knowledge of the process of somatic
{1 1100 l

evolution, such as the constraints of phylogenetic
1?2101 11002 11010 100720

1000O

relationships among cells, into variant calling
models.
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=a Challenge VII: Scaling phylogenetic models
to many cells and many sites

* Phylogenetic models of tumor evolution would still face the challenge
of computational tractability, which is mainly induced by (i) the
increasing numbers of cells that are sequenced in cancer studies and
(ii) the increasing numbers of sites that can be queried per genome.
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= Challenge VIII: Integrating multiple types of
variation into phylogenetic models

« |Important it becomes to model all types of available signal in
mathematical models of tumor evolution: from SNVs, over smaller
insertions and deletions, to large structural variation and CNVs.

Challenge IX: Inferring population genetic
parameters of tumor heterogeneity by model
integration

CONFIDENTIAL — Do Not Distribute | ? I i I
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=a Challenge X: Integration of single-cell data across
samples, experiments, and types of measurement

« Biological processes are complex and dynamic, varying across cells
and organisms. To comprehensively analyze such processes,
different types of measurements from multiple experiments need to
be obtained and integrated. Depending on the actual research
qguestion, such experiments can be different time points, tissues, or
organisms. For their integration, we need flexible but rigorous
statistical and computational frameworks.
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Figure 3. U (unmatched), M (matched), and M&U (both matched and unmatched) represent the data type that the paper describing the original tool claimed to support.
The main outputs are summarized based on the original papers and tool tutorials from our investigations. Black frames indicate unique outputs. Abbreviations: CCV,
canonical correlation vectorization; GFA, group factor analysis; HMRF, hidden Markov random field; ICA, independent component analysis; iINMF, integrative
nonnegative matrix factorization; MNM, multivariate normal modeling; MPP, marked point process; tSNE, t-distributed stochastic neighbor embedding; VB, variational
Bayes; UMAP, uniform manifold approximation and projection.
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- A Benchmark of Batch-effect Correction Methods for

Single-cell RNA Sequencing Data
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B (Guidelines to Choose an Integration Method
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-a Challenge XI: Validating and Benchmarking
Analysis Tools for Single-cell Measurements

« With the advances in sc-seq and other single-cell technologies, more and
more analysis tools become available for researchers, and even more are
being developed and will be published in the near future.

* Thus, the need for datasets and methods that support systematic
benchmarklng and evaluation of these tools is becoming increasingly
pressing.

* To be useful and reliable, algorithms and pipelines should be able to pass
the following quality control tests: (i) They should produce the expected
results (e.g., reconstruct phylogenies, estimate differential expressions, or
cluster the data) of high quality and outperform existing methods, if such
methods exist. (ii) They should be robust to high levels of sequencing noise
and technological biases, including PCR bias, allele dropout, and chimeric
signals. In addition, benchmarking should be conducted in a systematic
way, following established recommendations.
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. Single Cell RNA Tools
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= Single Cell RNA Tools
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=a Challenge XlI: Visualization

® malignant  ® non-malignant ® unresolved
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Amouzgar et. al., bioRxiv preprint doi: https://doi.org/10.1101/2022.01.06.475279
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=am A| Meets Single Cell Multi-Omics
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- A Cancer Cell Program Promotes T Cell Exclusion
and Resistance to Checkpoint Blockade
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=am Defining T Cell States Associated with Response
to Checkpoint Immunotherapy in Melanoma
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L Spatial Aspects of TIME (Tumor Immune Micro Environment)
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=a Changing the Paradigm

Chemo / Radiation / Surgery
COUNTERTHINK
“CHEMOTHERAPY STN:K?" »
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*  Cut it out (if possible)
*  Poison the tumor

*  Wait for escape

* Poison again

Re-educate the immune response to treat
tumors as

Unleash the immune system brakes and
turn on the gas

Specificity, memory, durability and
infectious anti-tumor activity
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B History and Evolution of Immunotherapy
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AMADEUS:

UNDERSTAND HOT VS. COLD
TUMORS

How do we figure out when cancer is
most vulnerable to immunotherapy?
We're taking a close look at cold vs. hot
tumors, and searching for biomarkers to
help answer the question.

KEY PARTNERS

CANCER

AL Bristol- 1 @RESEARCH
& Bristol-Myers Squibb RESEARCH

LEAD INVESTIGATOR

Padmanee Sharma, MD, PhD
MD Anderson Cancer Center

= Began enrolling patients in
September 2018; almost 60 patients
currently enrolled

=  Study open at:
= MD Anderson
= Dana-Farber
= Memorial Sloan Kettering
= Stanford Medicine
= UCLA
= UCSF
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PORTER:

TACKLE PROSTATE CANCER WITH
NEW COMBINATIONS

Prostate cancer is the second leading
cause of cancer death among men in
the U.S. We will use a “platform” design
to efficiently test several immunotherapy
treatment combinations to best treat this
deadly cancer.

KEY PARTNERS

%X% Bristol-Myers Squibb .I' Celldex

therapeutics

@) INOVIO  Oncovir, Inc.

INSTITUTE. Clinical Trials

LEAD INVESTIGATORS

Kristopher Wentzel, MD | Angeles Clinic

Matthew Galsky, MD | Mt. Sinai
Lawrence Fong, MD | UCSF
Julie Graff, MD | OHSU

= Began enrolling patients in June 2019

= Study open at:
= Angeles Clinic
= |[cahn School of Medicine, Mt. Sinai
= UCSF
= Oregon Health & Science University
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=2 Our Partners in PICI Bruce Program

MEMBER INSTITUTIONS +
RESEARCHERS PARTNERS + COLLABORATORS
(] ®

CANCER
RESEARCH
INSTITUTE

5A< :G I "ALLIANCE FOR
S CANCER GENE THERAPY
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