# Humanized mice models of oncoimmunology

Karolina Palucka, MD, PhD
The Jackson Laboratory for Genomic Medicine
Farmington, CT

SITC Cancer Immunotherapy Winter School February 20, 2019



### Presenter Disclosure Information

Karolina Palucka, MD, PhD

The following relationships exist related to this presentation:

Merck: Consulting, grant support

# Cancer: mutant cell that expands and corrupts Immunity



## Fighting corruption: Immunotherapy via blockade of T cell inhibitory pathways



# How do we unravel the mechanisms of resistance and toxicity in genetically complex, multicellular environments and heterogeneous hosts?



### Pre-clinical models

#### In vitro:

- 1. Standard 2D cultures
- 2. 3D cultures: organoids, spheroids, printed tissues

#### In vivo:

- 1. Mice: syngeneic, GEMMs, xenografts, humanized
- 2. Non-human primates
- 3. Canine models

There is no perfect model

# Non-humanized mouse models for oncoimmunology

| Model                                | Key features                                            | Pros                                                                                   | Cons                                                                                      |
|--------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Transplantable tumors Syngeneic mice | Ectopic transplanted tumors immunocompetent inbred mice | Rapid tumor growth Reproducibility Simple monitoring                                   | Genetically homogenous Rapid growth w/o chronic inflammation                              |
| Carcinogen-induced                   | "Natural" oncogenesis                                   | Genetically diverse Heterogenous Closer to human                                       | Time and resource dependent Difficult to monitor Poorly defined genetic alteration        |
| GEMMs                                | Well-defined genetic alteration                         | Heterogenous<br>with respect to onset,<br>progression and histology<br>Closer to human | Low mutational load Multiple concurrent transformation events leading to overwhelmed host |

## Of Mice and Not Men: Differences between Mouse and Human Immunology

Javier Mestas and Christopher C. W. Hughes<sup>1</sup>

J Immunol 2004; 172:2731-2738; ;

doi: 10.4049/jimmunol.172.5.2731

http://www.jimmunol.org/content/172/5/2731

Table I. Summary of some known immunological differences between mouse and human

|                                             | Mouse                                                                                                      | Human                                                        | Notes              | Refs   |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------|--------|
| Hemotopoiesis in spleen                     | Active into adulthood                                                                                      | Ends before birth                                            |                    |        |
| Presence of BALT                            | Significant                                                                                                | Largely absent in healthy tissue                             |                    | 9      |
| Neutrophils in periph. blood                | 10-25%                                                                                                     | 50-70%                                                       |                    | 10     |
| Lymphocytes in periph. blood                | 75–90%                                                                                                     | 30-50%                                                       |                    | 10     |
| Hemotopoietic stem cells                    | $c-kit^{high}$ , $flt-3^-$                                                                                 | $c-kit^{low}$ , $flt-3^+$                                    |                    | 11     |
| TLR2 expression on PBL                      | Low (induced on many cells including T cells)                                                              | Constitutive (but not on T cells)                            | Binds lipopeptides | 88     |
| TLR3                                        | Expressed on DC, Mac. Induced by LPS                                                                       | Expressed by DC. No LPS induction                            | Binds dsRNA        | 88, 89 |
| TLR9                                        | Expressed on all myeloid cells, plasmacytoid DC and B cells                                                | Expressed only on B cells, plasmacytoid DC and N             | Binds CpG          | 90,91  |
| TLR10                                       | Pseudogene                                                                                                 | Widely expressed                                             |                    |        |
| Stalic acid Neu5GC expression               | Widespread                                                                                                 | Absent                                                       | Binds pathogens    | 92     |
| CD33                                        | Expressed on granulocytes                                                                                  | Expressed on monocytes                                       | Binds sialic acids | 93     |
| Leukocyte defensins                         | Absent                                                                                                     | Present                                                      | neutrophils        | 14     |
| Paneth cell defensins                       | Processed by MMP7. Stored pre-<br>processed                                                                | Stored as pro-form. Processed by trypsin                     | 1                  | 94, 95 |
| Paneth cell defensins                       | At least 20                                                                                                | Two                                                          |                    | 13     |
| Macrophage NO                               | Induced by IFN-γ and LPS                                                                                   | Induced by IFN- $\alpha/\beta$ , IL-4 <sup>+</sup> anti-CD23 |                    | 17     |
| CD4 on macrophages                          | Absent                                                                                                     | Present                                                      |                    | 96     |
| Predominant T cells in skin and mucosa      | γ/δ TCR (dendritic epidermal T cells—DETC)                                                                 | $\alpha/\beta$ TCR                                           |                    | 40     |
| $\gamma/\delta$ T cells respond to phospho- | No                                                                                                         | Yes                                                          |                    | 97     |
| antigens                                    |                                                                                                            |                                                              |                    |        |
| CD1 genes                                   | CD1d                                                                                                       | CD1a,b,c,d                                                   |                    | 41     |
| NK inhibitory Rs for MHC 1 🖰                | Ly49 family (except Ly49D and II)                                                                          | KIR                                                          |                    | 20     |
| NKG2D ligands                               | H-60, Rae1 $\beta$                                                                                         | MIC A, MIC B, ULBP                                           | NK activating Rs   | 98     |
| fMLP receptor affinity                      | Low                                                                                                        | High                                                         | _                  | 99     |
| FcαRI                                       | Absent                                                                                                     | Present                                                      |                    | 21     |
| FcγRIIA, C                                  | Absent                                                                                                     | Present                                                      |                    | 22     |
| Serum IgA                                   | Mostly polymeric                                                                                           | Mostly monomeric                                             |                    | 21     |
| Ig classes                                  | IgA, IgD, IgE, IgG1, IgG2a*, IgG2b, IgG3, IgM * absent in C57BL/6, /10, SJL and NOD mice, which have IgG2c | IgA1, IgA2, IgD, IgE, IgG1, IgG2,<br>IgG3, IgG4, IgM         |                    | 23     |

|   | Ig CDR-H3 region                        | Shorter, less diverse                            | Longer, more diverse                                 |                       | 100       |
|---|-----------------------------------------|--------------------------------------------------|------------------------------------------------------|-----------------------|-----------|
|   | BLNK deficiency                         | IgM <sup>high</sup> B cells in periphery         | No peripheral B cells                                |                       | 25, 26    |
|   | Btk deficiency                          | Normal pre-B and immature B                      | Blocks pro-B to pre-B transition                     |                       | 28<br>28  |
|   | λ5 deficiency                           | "leaky" block at pro-B to pre-B transition       | Blocks pro-B to pre-B transition                     |                       |           |
|   | CD38 expression on B cells              | Low on GC B cells, off in plasma                 | High on GC B cells and plasma cells                  |                       | 29        |
|   |                                         | cells                                            |                                                      |                       |           |
|   | B cell CD5 and CD23 expression          | Mutually exclusive                               | Co-expression                                        |                       | 29        |
| 1 | IL-13 effect on B cells                 | None                                             | Induces switch to IgE                                |                       | 24        |
|   | Thy 1 expression                        | Thymocytes, peripheral T cells                   | Absent from all T cells, expressed on neurons        |                       | 32        |
|   | Effect of $\gamma_c$ deficiency         | Loss of T, NK, and B cells                       | Loss of T, NK, but B cell numbers normal             |                       | 33, 34    |
|   | Effect of Jak3 deficiency               | Phenocopies $\gamma_c$ deficiency                | Phenocopies $\gamma_c$ deficiency                    |                       | 31        |
|   | Effect of IL-7R deficiency              | Blocks T and B cell development                  | Only blocks T cell development                       |                       | 35, 36    |
|   | ZAP70 deficiency                        | No CD4 <sup>+</sup> or CD8 <sup>+</sup> T cells  | No CD8 <sup>+</sup> T but many nonfunctional         | Related to syk level? | 37, 38    |
|   | ,                                       |                                                  | CD4 <sup>+</sup>                                     | J                     | ,         |
|   | Caspase 8 deficiency                    | Embryonic lethal                                 | Viable—immunodeficiency                              |                       | 62,63     |
|   | Caspase 10                              | Absent                                           | Present                                              |                       | 62        |
|   | IFN- $\alpha$ promotes Th1              | No                                               | Yes                                                  | Mutant stat2 in mice  | 44        |
|   | differentiation                         |                                                  |                                                      |                       |           |
|   | Th expression of IL-10                  | Th2                                              | Th1 and Th2                                          |                       | 51        |
|   | IL-4 and IFN-γ expression by            | Either/or                                        | Sometimes both                                       |                       |           |
|   | cultured Th                             |                                                  |                                                      |                       |           |
|   | CD28 expression on T cells              | On 100% of CD4 <sup>+</sup> and CD8 <sup>+</sup> | On 80% of CD4 <sup>+</sup> , 50% of CD8 <sup>+</sup> |                       | 54        |
|   | ICOS deficiency                         | Normal B cell numbers and function,              | B cells immature and severely                        | Possibly age-related  | 55–57     |
|   |                                         | normal IgM levels                                | reduced in number, low IgM                           |                       |           |
|   | B7-H3 effects on T cells                | Inhibits activation                              | Promotes activation                                  |                       | 101–2     |
|   | ICAM3                                   | Absent                                           | Present                                              | DC-SIGN ligand        | 103-4     |
|   | P-selectin promoter                     | Activated by TNF and LPS                         | Unresponsive to inflammation                         |                       | 58        |
|   | GlyCAM                                  | Present                                          | Absent                                               |                       | 105       |
|   | MHC II expression on T cells            | Absent                                           | Present                                              |                       | 59-61     |
|   | Kv1.3 K <sup>+</sup> channel on T cells | Absent                                           | Present                                              | Regulates Ca flux     | 64,65     |
|   | MUC1 on T cells                         | Absent                                           | Present                                              | Regulates migration?  | 106       |
|   | Granulysin                              | Absent                                           | Present                                              | In CTL                | 43        |
|   |                                         |                                                  |                                                      | (Table c              | ontinues) |

Table I. Continues

|                                                                         | Mouse                            | Human                                      | Notes         | Refs.        |
|-------------------------------------------------------------------------|----------------------------------|--------------------------------------------|---------------|--------------|
| CXCR1                                                                   | Absent                           | Present                                    |               | 66,67        |
| IL-8, NAP-2, ITAC, MCP-4,<br>HCC-1, HCC-2, MPIF-1,<br>PARC, eotaxin-2/3 | Absent                           | Present                                    | Chemokines    | 66, 67       |
| WRP-1/2, lungkine, WCP-5                                                | Present                          | Absent                                     | Chemokines    | 66,67        |
| IFN-γ effects in demyelinating disease                                  | Protective in EAE                | Exacerbates MS                             |               | 4, 69–<br>70 |
| DTH lesions                                                             | Neutrophil-rich                  | Lymphocyte-rich                            |               | 73,74        |
| Constitutive MHC II on EC                                               | Absent                           | Present                                    |               | 80           |
| EC present Ag to CD4+ T                                                 | No                               | Yes                                        | Memory T only | 75–77        |
| CD58 (LFA-3)                                                            | Absent                           | Present                                    | CD2 ligand    | 82           |
| T cell dependence on CD2-ligand interactions                            | Low                              | High                                       |               | 82           |
| CD2 ligand interaction                                                  | Lower affinity, with CD48        | Higher affinity, with CD58                 |               | 82           |
| CD40 on EC                                                              | Absent                           | Present                                    |               | 83,84        |
| Vascularized grafts tolerogenic?                                        | Yes                              | No                                         |               | 5            |
| Microchimerism induces graft tolerance?                                 | High success rate                | Low success (expts. in non-human primates) |               | 7            |
| Passenger leukocytes                                                    | Account for graft immunogenicity | Do not account for graft immunogenicity    |               | 6            |

# Response divergence across species in innate immune response



Gene expression variability across cells and species shapes innate immunity

Tzachi Hagai<sup>1,2,</sup> Sarah A.

Sarah A. Teichmann<sup>1</sup>

https://doi.org/10.1038/s41586-018-0657-2

### Humanized mouse models for oncoimmunology



## Major Humanized Mice Strain Platforms

| NSG                                        | NOD-scid IL2rg <sup>null</sup>                    | Jacksor  | Jackson Laboratory |  |
|--------------------------------------------|---------------------------------------------------|----------|--------------------|--|
| NOG                                        | NOD-scid IL2rg <sup>Trunc</sup>                   | CIEA     | (Tokyo)            |  |
| NRG                                        | NOD-Rag1 <sup>null</sup> IL2rg <sup>null</sup>    | Jacksor  | n Laboratory       |  |
| BRG                                        | BALB/c-Rag2 <sup>null</sup> IL2rg <sup>null</sup> | Yale/Uni | v. Hosp. Zurich    |  |
| "MISTRG" Rongvaux, 2014 Nat Biotech 32;364 |                                                   |          |                    |  |
| H2dRG                                      | Stock-H2d-Rag2null IL2rgnull                      | Pasteur  | Institute          |  |

C57BL/6 Rag2<sup>null</sup> IL2rg<sup>null</sup> CD47<sup>null</sup> NIAID/Stanford Univ.

# Targeting the IL-2r Common Gamma Chain prevents mouse T, B and NK Cell Development



IL2r common gamma chain targeted by 4 different groups and combined with *scid*, *Rag1*<sup>null</sup>, or *Rag2*<sup>null</sup> on different genetic backgrounds

L Shultz et al (2007) Nat Rev Immunol 7:118
Y Rochman et al. 2009. *Nat Rev Immunol* 9:480
M Noguchi et al (1993) Cell 73:147

Courtesy of L. Shultz

#### **NSG** mice:

## Expression of Human-Like SIRPα Polymorphism by NSG Macrophages Protects Human HSCs from Phagocytosis



- Binding of CD47 to SIRPa triggers SIRPa clustering.
- Phosphorylation at the cytoplasmic tail ultimately signals "self" > inhibition of phagocytosis

Adapted from Subramanian et al (2006)

# Modeling Human Tumor Immunotherapy in immunodeficient [NSG] Mice



# NSG Mice Support Engraftment With Human Hematopoietic Cells and Tissues



### Hematolymphoid Engraftment Methods



### **Engraftment of NSG Mice with Human PBMC**

i.v. or i.p. injection of human PBMC



Human T cell function can be analyzed for 4-6 week prior to development of lethal xenogeneic GVHD

### Human Skin Allograft Rejection in PBMC model



Split thickness human skin grafts were transplanted on NSG mice treated with anti-Gr-1mAb to reduce mouse granulocyte and macrophage activity. Four weeks later mice were left untreated (top panel) or were injected with 20 x 10<sup>6</sup> allogenic human PBMC (bottom panel). Allografts were evaluated 4 wk following PBMC injection W Racki et al (2010) Transplantation 89:527

## Colon cancer tumor rejection mediated by human allogeneic PBMC in a model of combination immunotherapy



Sanmamed et al Cancer Res 75 (17) 2015

## Gastric cancer tumor rejection mediated by autologous PBMC in a model of combination immunotherapy



### Xenogeneic GVHD Mediated by Human PBMC







- -hair loss/erythema
- -hunched posture
- -weight loss
- -death

## Reduced Xenogeneic GVHD in NSG Mice lacking Murine MHC Class I and II Molecules

#### Mouse MHC class I knockouts

NSG  $(\beta 2M)^{null}$ NSG  $(KD)^{null}$ 



MA King et al (2009) Clin Exp Immunol 157:104

#### Mouse MHC class II knockouts

NSG (I-A)<sup>null</sup> NSG (I-A/I-E)<sup>null</sup>



L Covassin et al (2011) Clin Exp Immunol 166:269

## NSG-(KD)<sup>null</sup> (IA<sup>null</sup>) and NSG-B2M<sup>null</sup> (IA/IE)<sup>null</sup> Mice show Increased Survival Following Injection with Human PBMC



8-12 week-old mice were injected IP with 1 x 10<sup>7</sup> human PBMC

Combined with PDX tumors

### Patient-Derived Xenografts (PDX)



#### **Limitations:**

- Replacement of stroma with mouse cells
- Pre-existing infiltrate that cannot be maintained over time
- Lack of systemic immune cells that can be attracted to tumor

# **Engraftment of NSG Mice with Human Hematopoietic Stem Cells**

Human HSC source: Umbilical cord blood, bone marrow, mobilized, or fetal liver



X-Ray dose

250cGy

100cGy

## Human Cytokines are Required for the Differentiation of Human HSC into Multiple Cell Lineages



## Human Cytokines Expressed in Humanized Mice Support Human HSC Differentiation

| Human cytokine(s)        | Cell populations targeted                  |
|--------------------------|--------------------------------------------|
| Membrane-bound SCF       | Hematopoietic stem cells (HSC), mast cells |
| SCF, IL-3, GM-CSF (SGM3) | HSC, myeloid cells, mast cells             |
| BAFF                     | B cells                                    |
| Thrombopoietin           | HSC, platelets                             |
| IL2                      | T cells and NK cells                       |
| IL-6                     | Plasma cells                               |
| IL7                      | T cells                                    |
| IL15                     | NK cells                                   |
| FLT3L                    | Dendritic cells                            |
| CSF1                     | Macrophages                                |

#### Combination of multiple humanized alleles

```
M-CSF<sup>h/h</sup>
IL-3/GM-CSF<sup>h/h</sup>
hSirpα<sup>tg</sup>
TPO<sup>h/h</sup>
RAG2<sup>-/-</sup>
IL2RGamma<sup>-/-</sup>
```

**Myeloid development** 

Phagocytic tolerance Longterm maintenance of functional HSCs

Immunosuppression (no mouse T, B, NK cells)



### MI(S)TRG mice are highly permissive for human hematopoiesis



n= 56-155 mice/group

7-9 weeks post-transplantation

p-value: One-way ANOVA

#### Development and function of human innate immune cells in a humanized mouse model

Anthony Rongvaux<sup>1,10</sup>, Tim Willinger<sup>1,10</sup>, Jan Martinek<sup>2,3</sup>, Till Strowig<sup>1,9</sup>, Sofia V Gearty<sup>1</sup>, Lino L Teichmann<sup>4,5</sup>, Yasuyuki Saito<sup>6</sup>, Florentina Marches<sup>2</sup>, Stephanie Halene<sup>7</sup>, A Karolina Palucka<sup>2</sup>, Markus G Manz<sup>6</sup> & Richard A Flavell<sup>1,8</sup>



published online 16 March 2014; doi:10.1038/nbt.2858

#### The angiogenic switch

- Mediated by pro-angiogenic factors (VEGF, ...)
- Transition from hyperplasia to tumor progression and malignancy
- Role of inflammation in the tumor microenvironment



Baeriswyl et al, 2009

#### Tumor growth in MISTRG requires human VEGF



One-way ANOVA p<0.0001
\*\*\* p<0.05 vs. all other group
(Tukey post-hoc test)

## Examples of progress in the field on humanized mice based on host modification

- next generation MISTRG mice with IL15&IL15Ra [R. Flavell]
- MISTRG6 for B cell malignancy Nat Med Nov 2016 [M. Dhodapkar]
- NSG with mouse kit mutant (Kitw41) for engraftment Cell Stem Cell 2014 [S. Rahmig]
- BAFF for improved antibody responses [R. Pelanda]
- NSG-SGM3 with CSF1-tg for macrophages and IL2-tg for NK cells [D. Greiner]
- NSG-FcRg-ko for IVIG Cell Rep. 2015 [I. Schwab]
- Human thymus reconstruction [M. Brehm, M. Sykes]

### NSG with mouse kit mutant (Kitw41)

- Human HSCs engraft efficiently into adult immune-deficient Kit mutant mice
- Kit mutation enables human HSC engraftment without irradiation conditioning
- Human HSCs show robust multilineage engraftment and self-renewal in mice



Cosgun et al., Cell Stem Cell 2014

### BRG with mouse Flt3 mutant (BRGF)

- BRGF mice have reduced cDC and pDC compartments, increased Flt3L levels and deficit to Flt3L stimulation
- Human cDCs and pDCs develop from hCD34+ precursors can be specifically boosted with exogenous Flt3L
- Increased human T and NK-cell homeostasis after boosted with exogenous Flt3L

Li et al., Eur J Immunol 2016



## Humanized mice: Current challenges and opportunities

- Engraftment with HPCs
   Lack of human cytokines impairs HSC growth & differentiation
   Source of HPCs: fetal tissues, bone marrow, blood,
   Autologous models: iPS
- Mouse hosts
   Mouse myeloid cell function
   Murine MHC
- Suboptimal lymphoid architecture and immune function
   T cell education in context of mouse MHC (H2) antigens

   Poor lymph node development, lack of FDCs no germinal centers
   Low levels of humoral immunity, impaired lg class switching

## Next Generation of Humanized Mice

## CRISPR editing of the host and of human cells

## iPS cells to create autologous models

### **Genetic editing for expression** of human factors

Cytokines

**HLA** molecules

Microenvironmental factors

(SIRPa)

Hormones (prolactin)

### Reduction of mouse immunity

H2 molecules

Thymus

Macrophages

Granulocytes

**Dendritic Cells** 

Chemokine receptors

Interferon receptors

Toll-like receptors

#### **Human cancer models**

Leukemias and lymphomas

Solid tumors

Role of human stroma

Shultz Nat Rev Immunol 2012

# Thanks to our patients Thanks to funding organizations

KP Lab:
Chun Yu
Florentina Marches
Jan Martinek
Patrick Metang
Pierre Authie

Lenny Shultz
Jim Keck and colleagues at JAX Sacramento
Susie Airhart

Richard Flavell
Anthony Rongvaux
Michael Chiorazzi

**Jacques Banchereau** 

https://ocg.cancer.gov/programs/HCMI oncologymodels.org

http://tumor.informatics.jax.org/mtbwi/pdxSearch.do;jsessionid=23644E4F8468C119FF68A70AA64AFA34

karolina.palucka@jax.org