

NATIONAL HARBOR, MARYLAND

Anti-Tumor Vaccines Platforms

Esteban Celis, M.D., Ph.D. Georgia Cancer Center Augusta University

Disclosure of conflict of interest

Paid consultant, Oncovir, Inc., developer of Hiltonol™ (Poly-ICLC)

Why cancer vaccines?

- The most effective checkpoint blockade inhibitor (aPD1/aPD-L1) works in hot tumors (T cell infiltrated)
- Cold tumors may be the result of poorly immunogenic cancers that do not elicit endogenous T cell responses
- Cancer vaccines could turn cold into hot tumors and improve checkpoint blockade efficacy

Cancer vaccines classes according to time of administration

Prophylactic

- Prior to cancer initiation
 - Healthy individuals (HPV, HBV vaccines)
 - For high risk patients (BRCA1/2+; HER2, EGFR, FR, MUC1 vaccines?
- Presence of pre-malignant lesions (CIN, PIN, polyps)
- Clinical "disease-free" patients (post conventional therapy)

Therapeutic

- Low tumor burden (most likely to respond, metastases prevention)
- High tumor burden (immunocompromised patients?)

Goals of cancer vaccination

- 1. Elicit a **substantive** and **durable** immune response capable of recognizing tumor cells
 - Immune response: T cell mediated
 - Substantive: Similar to infectious disease vaccines or at least measurable w/o
 in vitro manipulations (e.g., peptide expansion culture)
 - Durable: Immune memory, capable of booster effects
 - Tumor recognition, not only immunogen recognition
- 2. Minimal or tolerable toxicity
 - Off-target toxicity (presence of Ag in normal tissues)
 - Exaggerated inflammatory responses (cytokine storm, adjuvant toxicity)

Tumor antigens used in vaccines

- Uncharacterized tumor-antigens
 - In situ tumor vaccination with adjuvant, oncolytic virus, beam irradiation
 - Whole self-tumor cell vaccines, tumor lysates
 - Tumor cell lines, sometimes genetically modified (CD80/86, IL-2, GMCSF)
- Characterized conventional/shared antigens
 - Viral antigens (HPV16-E6/E7)
 - Tissue differentiation antigens (MelanA, Trp1/2, PSMA)
 - Abnormally expressed products (HER2, CEA, MUC1)
- Products of genetic aberrations (mutations, translocations, etc.)
 - Neo T cell antigens: mutations within MHC-binding peptide regions

Characterized cancer vaccine components

- Antigen
 - Protein/peptides
 - DNA/RNA
- Adjuvant (e.g., TLR agonists)
- Delivery system
 - Saline/PBS
 - Oil:water emulsions, nanoparticles, ISCOMs, DCs
- Adjuncts
 - Costimulatory agents (antibodies, cytokines)
 - Checkpoint inhibitors

TriVax, a highly immunogenic peptide vaccine: comparison of several TLR adjuvants

- One single i.v. injection of Ova₂₅₇ (SIINFEKL) in PBS
- TriVax: peptide + TLR-L + aCD40 mAb
- Responses measured in blood 6 days post-vaccination

Q: So what is special about poly-IC?

A: Poly-IC stimulates TLR3 (endosomes) & MDA5, a RIG-I-like receptor (cytoplasmic)

Role of TLR3 and MDA5 in vaccine responses

HPV mouse tumor model

Experiments using HPV16-E7₄₉ (RAHYNIVTF) epitope

Therapeutic vaccine: anti-tumor efficacy

T cell responses to Trp1 melanoma antigen

TriVax

BiVax

Peptide composition affects immunogenicity

Amino Acid Hydrophobicity

Residue Type	kdHydrophobicity <u>a</u>
Ile	4.5
Val	4.2
Leu	3.8
Phe	2.8
Cys	2.5
Met	1.9
Ala	1.8
Gly	-0.4
Thr	-0.7
Ser	-0.8
Trp	-0.9
Tyr	-1.3
Pro	-1.6
His	-3.2
Glu	-3.5
Gln	-3.5
Asp	-3.5
Asn	-3.5
Lys	-3.9
Arg	-4.5

Sequence
RAHYNIVTF (HPV)
TAPDNLGYM (Trp1)

^a A simple method for displaying the hydropathic character of a protein. Kyte J, Doolittle RF. *J Mol Biol*. 1982 May 5;157(1):105-32.

Enhanced vaccine potency by amphiphilic peptide

Long peptides Vs. amphi peptides

Vaccine route of administration

- Traditionally vaccines are injected via the s.c. route, to make antigen accessible to resident DCs, generating responses in draining lymph nodes
- Thus, s.c. vaccines do not disseminate Ag to distal lymphoid organs
- Other less common routes of vaccination:
 - intradermal
 - Intranodal
 - Intramuscular
 - Intravenous
 - intratumoral
- i.m. or i.v. vaccination may recruit more naïve T cells to the response by disseminating Ag throughout the immune system

Effect of vaccine route of administration

Effect of vaccine route of administration with long peptide

Vaccine route of administration: immunogenicity correlates with antitumor effects

Ways to improve vaccine efficiency

- Costimulatory antibodies (aCD40, aCD27, aCD137/4-1BB, aCD134/OX40)
- Cytokines (IL-2, IL-15, IL-2/anti-IL-2 complexes)
- Checkpoint blockers (aCTLA4, aPD1), ARG IDO inhibitors
- Enhancing T cell infiltration to the tumor parenchyma

Enhancing T cell infiltration to the tumor

- Mice bearing sc B16 tumors were injected 2X (3 days apart) and tumors were harvested 2 days later and analyzed for CD4 and CD8 T cells
- Effects were absent in MDA5-KO and IFNabR-KO mice (not shown)

Model to explain how iv poly-IC augments tumor T cell infiltration

Vascular endothelial cell lines make IFN-I when stimulated with Poly-ICLC

- Also chemokines (CXCL10)
- Enhanced VCAM-I expression

Conclusions

- Numerous and very diverse vaccine platforms are available to treat or prevent cancer
- Effective ones must elicit strong and durable responses capable of tumor recognition
- Both conventional Ag and neoantigen vaccines could be effective if administered sensibly with appropriate adjuvants and costimulation
- Improving T cell tumor infiltration and blocking immunosuppression by the tumor microenvironment will be necessary to achieve antitumor effects

Acknowledgements

Valentyna Fesenkova

Takumi Kumai

Juan Wu

Hussein Sultan

Aaron Fan

Diane Addis

Hyun-Il Cho

Kelly Barrios

Young-Ran Lee

Toshihiro Nagato

Zili Wang

Supported by:

