SITC 2019 Gaylord National Hotel

Gaylord National Hotel & Convention Center NOV. 6-10

NATIONAL HARBOR, MARYLAND

The Roadmap to Tumor-infiltrating Lymphocyte (TIL) Therapy: Understanding Genetic Alterations for Improved Patient Treatment

Caitlin Creasy, Ph.D. Candidate

Bernatchez Lab

11/10/2019

MDAnderson Cancer Center

Making Cancer History®

Presenter Disclosure Information

Caitlin Creasy

The following relationships exist related to this presentation: **No relationships to disclose**

Adoptive Cell Transfer of Tumor-Infiltrating Lymphocytes at UTMDACC

Adapted from Tavera, Forget et al., Journal of Immunotherapy 2018

#SITC2019

Clinical response to TIL therapy for metastatic melanoma worldwide

MDACC (USA)

Number of Patients	CR	PR	CR + PR (%)			
74	8	23	31 (42%)			
Number reported in Forget, Haymaker et al. 2018, Clinical Cancer Research						

Clinical response to TIL therapy for metastatic melanoma worldwide

MDACC (USA)

Number of Patients	CR	PR	CR + PR (%)
74	8	23	31 (42%)
Number reported in For	get, Haymake	r et al. 2018, C	linical Cancer Research

Moffit Cancer Center (USA)

Patients	RI	PR C	R + PR (%)
13	2	3	5 (38%)

NCI (USA)

Number of Patients	CR	PR	CR + PR (%)
93	20	32	52 (56%)
Number reported in R	osenberg et al	. Clin Can Res	2011

Sheba (Israel)

Number of Patients	CR	PR	CR + PR (%)	
57	5	18	23 (40%)	
Number reported in Besser	et al. Clin Can I	Res 2013		

University of Copenhagen (Denmark)

CR	PR	CR + PR (%)
3	7	10 (42%)
	3	3 7

#SITC2019

Clinical response to TIL therapy for metastatic melanoma worldwide

MDACC (USA)

Number of Patients	CR	PR	CR + PR (%)
74	8	23	31 (42%)

NCI (USA)

Number of Patients	CR	PR	CR + PR (%)
93	20	32	52 (56%)

Number reported in Rosenberg et al. Clin Can Res 2011

Question: Why do 50% of patients not respond to therapy?

Number of Patients	CR	PR	CR + PR (%)			
13	2	3	5 (38%)			
Number reported in Pilon-Thomas et al. J. Immunother 2012						

Number reported in Besser et al. Clin Can Res 2013

University of Copenhagen (Denmark)

Number of Patients	CR	PR	CR + PR (%)
24	3	7	10 (42%)
Number reported in Ander	sen et al Clin Ca	n Res 2016	10 (4270)

#SITC2019

Using formalin-fixed, paraffin embedded (FFPE) patient tissues to investigate genetic differences

Adapted from Tavera, Forget et al., Journal of Immunotherapy 2018

Using formalin-fixed, paraffin embedded (FFPE) patient tissues to investigate genetic differences

Adapted from Tavera, Forget et al., Journal of Immunotherapy 2018

Profile of Patient Samples used for WES

•61 patients treated at MDACC

9 patients treated at Moffitt Cancer Center

Num pa	ber of tients	Total	Complete Responder	Partial Responder	Stable Disease	Progressive Disease	Progressed Sample
Stage							
	_ IIIC	4	2	1	1	0	0
	M1a	1	0	0	0	1	0
Stage IV	M1b	10	1	1	5	2	1
0	M1c	55	5	14	18	13	5
TIL Harv Site	est						
lymph	Node	19	3	2	7	6	1
Soft	Tissup	31	0	9	13	5	4
V	isceral	10	3	2	2	2	1
Motastasis			U U	-	-	-	
Soft Ti	issuet	1	0	1	0	0	0
V	Viscoral		U U		Ŭ	•	•
Lymph I	Node+	3	1	1	1	0	0
V	Visceral					-	-
Soft Ti	issue+	6	1	1	1	3	0
Lymph Node							
Progress	Progression						
on TIL							
	Yes	59	2	11	24	16	6
	No	11	6	5	0	0	0

Higher Non-Silent Mutation Burden AND Neo-Antigen load associate with <u>OS</u> after TIL therapy

Non-silent mutation burden

Cox-proportional hazards; p=0.07

Higher Non-Silent Mutation Burden AND Neo-Antigen load associate with <u>OS</u> after TIL therapy

Non-silent mutation burden

Neoantigen burden Cox-proportional hazards; p=0.042

34th Annual Meeting & Pre-Conference Programs

Using formalin-fixed, paraffin embedded (FFPE) patient tissues to investigate genetic differences

Adapted from Tavera, Forget et al., Journal of Immunotherapy 2018

Profile of Patient Samples used for RNA sequencing

42 patients treated at MDACC

Num	ber of tients	Total	Complete Responder	Partial Responder	Stable Disease	Progressive Disease	Progressed Sample
Stage							
	IIIC	2	0	0	1	0	1
	M1a	1	0	0	0	1	0
Stage IV	M1b	4	0	2	2	0	0
l	M1c	35	2	5	14	7	7
TIL Harv	est						
Site							
Lymph	Node	12	1	1	3	6	1
Soft	Tissue	19	0	5	9	1	4
Vi	isceral	5	0	1	2	0	2
Meta	stasis						
Soft Ti	ssue+	0	0	0	0	0	0
Vi	isceral						
Lymph I	Vode+	3	1	0	1	0	1
Vi	isceral						
Soft Ti	ssue+	3	0	0	2	1	0
Lymph	Node						
Progress	sion						
on TIL				-			
	Yes	38	0	5	17	8	8
	No	4	2	2	0	0	0

RNA sequencing reveals differences in genes enriched in response and survival

Response

Samples labeled have a q<0.01

RNA sequencing reveals differences in genes enriched in response and survival

Response

PFS

Samples labeled have a q<0.01

#SITC2019

RNA sequencing reveals differences in genes enriched in response and survival

Response

PFS

OS

#SITC2019

Samples labeled have a q<0.01

- The overlap between the OS, PFS, and response is very significant (p<0.003 pairwise Fisher exact tests)
- We compared genes that were associated with all 3 outcomes

- The overlap between the OS, PFS, and response is very significant (p<0.003 pairwise Fisher exact tests)
- We compared genes that were associated with all 3 outcomes

Associated with improved survival and response: PDE1C, NGFR, and RTKN2

- PDE1C Phosphodiesterase 1C
 - inhibits cAMP and cGMP (Shimizu et al., 2009)
 - cAMP negatively regulates T_{eff} cells (Wehbi and Taskén, 2016)
- RTKN2 Rhotekin 2
 - Apoptosis occurs in CD4⁺ cells lacking RTKN2 (Collier et al., 2008)
- NGFR Nerve growth factor receptor
 - Enriched as melanoma progresses and metastasizes (Radke et al., 2017)
 - NGFR can bind to B7-1 (AAI 2019 Abstract, Morano et al., 2019)

Associated with improved survival and response: PDE1C, NGFR, and RTKN2

- PDE1C Phosphodiesterase 1C
 - inhibits cAMP and cGMP (Shimizu et al., 2009)
 - cAMP negatively regulates T_{eff} cells (Wehbi and Taskén, 2016)
- RTKN2 Rhotekin 2
 - Apoptosis occurs in CD4⁺ cells lacking RTKN2 (Collier et al., 2008)
- NGFR Nerve growth factor receptor
 - Enriched as melanoma progresses and metastasizes (Radke et al., 2017)
 - NGFR can bind to B7-1 (AAI 2019 Abstract, Morano et al., 2019)

Associated with poor survival and no response: ELFN1

- <u>ELFN1</u>- Extracellular Leucine Rich Repeat and Fibronectin Type III Domain Containing 1
 - inhibits glutamate receptor type 3 (Dunn et al., 2018)
 - T cells cannot be activated or have proper migration without glutamate (Shanker et al., 2018)

ELFN1 Methylation Supports Distinct Profiles in Response to ACT

CI1

CI2

Associated with poor survival and no response: ELFN1

- <u>ELFN1</u>- Extracellular Leucine Rich Repeat and Fibronectin Type III Domain Containing 1
 - inhibits glutamate receptor type 3 (Dunn et al., 2018)
 - T cells cannot be activated or have proper migration without glutamate (Shanker et al., 2018)
- Hyper-methylation supports low expression of ELFN1 in responding patients
- Hypo-methylation suggests gene expression of ELFN1 in non-responding patients

Using formalin-fixed, paraffin embedded (FFPE) patient tissues to investigate genetic differences

Adapted from Tavera, Forget et al., Journal of Immunotherapy 2018

ELFN1 is expressed in tumor cells of metastatic melanoma patients

++

Patient Sample 1

Patient Sample 2

#SITC2019

200x Magnification Brown: represents ELFN1 and Counterstained: Hematoxylin

34th Annual Meeting & Pre-Conference Programs

Differentially expressed genes at recurrence

8 cases of post-TIL ACT at MDACC 3 paired cases

 Enriched genes at recurrence associate with an EMT-like phenotype

Conclusions and Take Home Messages

- Conclusions
 - Enriched non-silent mutation burden and neo-antigen load associate with overall survival after TIL therapy, but not PFS or response
 - RNA sequencing reveals PDE1C, NGFR, and RTKN2 enriched in patients with long OS, long PFS, and response
 - ELFN1 is demonstrated to be enriched in patients with short OS, short PFS, and non-responsiveness as supported by methylation profiling.
 - There is an enrichment of genes associated with a mesenchymal phenotype at recurrence
- Future Directions
 - ELFN1 positive single cell transcriptomic profiling and functional studies are ongoing
- Application to the field
 - Potential biomarkers and routes of immune escape are revealed

Acknowledgements

UT MDACC

Chantale Bernatchez (PI) Cara Haymaker Marie-Andrée Forget Tatiana Karpinets Patrick Hwu Carlos Torres-Cabala Rodabe Amaria

Clinical TIL Laboratory

Melanoma Medical Oncology Clinicians and Staff

The University of Texas Health Science Center at Houston THE UNIVERSITY OF TEXAS MDAnderson Cancer Center

Making Cancer History®

Graduate School of Biomedical Sciences

Grant Funding:

Dr. Miriam and Sheldon G. Adelson Medical Research Foundation (AMRF)- *Interactive Program to Identify Predictive Biomarkers in TIL Therapy* (#13045711)

National Cancer Institute (NCI)- *Biomarkers and Resistance Mechanisms in Melanoma T-Cell Therapy* (#R01CA184845)

The Broad Institute

Yuzhong "Jeff" Meng*

Rameen Beroukhim Chip Stewart Judit Jane-Valbuena Samira Bahl Levi Garraway Moffitt Cancer Center Shari Pilon-Thomas Amod Sarnaik

John Wayne Cancer Institute Dave Hoon

Our Patients and their families!

34th Annual Meeting & Pre-Conference Programs

#SITC2019

*Co-first author