Immunotherapy on the Horizon: Re-directed T cells as therapy

Marcela V. Maus, MD, PhD Advances in Cancer Immunotherapy-MA SITC education event Sept 8, 2016, Boston, MA

Disclosures

- All cell therapies are currently investigational and not FDAapproved
- Speaker is inventor on patents related to engineered cell therapies; patents held by University of Pennsylvania and some of these are licensed to Novartis
- Speaker is a consultant for various cell therapy companies (Agenus, Juno, Intellia, Neon, Unum, TCR2 and WindMIL), none of which will be discussed

Learning Objectives

- Describe the rationale for cell-based immunotherapy
- Identify the scientific basis of T cells engineered with chimeric antigen receptors and T cell receptors
- Explain the mechanisms and types of toxicities that can be expected with T cell therapies, along with current management strategies

Immunology has offered hope for curing cancers for 100 years

Why was it so hard? TOLERANCE

Low affinity of T cell receptors (central tolerance) Inhibitory effects of tumor environment (stronger peripheral tolerance) (Trafficking of T cells into tumor?)

What is different now?

Genetic engineering of T cell receptors to increase affinity Bypassing T cell receptor by using chimeric antigen receptors Blocking inhibitory molecules of tumor microenvironment

Approaches to overcome tolerance

CAR T cells

To engineer a T cell, you need...

A gene delivery system (lentiviral vector) An antigen receptor (natural ligand, TCR or CAR) *Ex vivo culture system (anti-CD3/28 beads)*

Antigen recognition: TCR vs CAR

Overview of T cell Therapy

^a Cellular reprogramming and ex vivo expansion are conducted at a cell processing facility.

T cells re-directed with higher-affinity TCRs

- Most self-directed natural TCRs have very low affinity, are probably not effective
- MART-1TCR: on-target toxicity (Johnson et al, Blood 2009)
- MAGE-A3 TCR: off-target toxicity (Linette et al Blood 2013, Cameron et al, STM, 2013)
- NY-ESO-1TCR: responses!

PHASE I/II STUDY IN SYNOVIAL SARCOMA

RADIOGRAPHIC PSEUDOPROGRESSION AND RESPONSE OF LUNG METASTASES LEADING TO COMPLETE RESPONSE

Issues in CAR design

- What antigen to target?
 - Is it on the surface of the tumor? Is it a tumor driver or otherwise essential? Is it on any normal tissues?
 - Is there a patient population who could benefit?
- What mode of gene transfer?
- What signaling domains to include in CAR?
- What culture system to use for T cells?

Human CD19 Expression by Hematopoietic Cells (*Opportunities for CART19 Intervention*)

CD19 Expression

Adapted From: J Rubenstein, M.D., Ph.D.

T cells Express Multiple Co-Receptors

Comparing CD19 CARs for Leukemia

Vector	Retroviral ¹	Retroviral ²	Lentiviral ³
Expression	~30 Days	~30-60 Days	>4 years
	¹ Brentjens Blood 2011 and Science Trans Med, 2014	² Kochenderfer Blood 2012; Kochenderfer JCO 2014; Lee, Lancet Oncology 2015	³ Porter NEJM 2011; Science Trans Med, 2011 , 2015

Examples of Clinical Responses: CLL

Porter NEJM 2011 Kalos STM 2011

Long term persistence in CLL patients with durable remission

Rapid Induction of Remission in pre-B ALL Marrow day +6 day +23 • Deep remission

induced in 23 days

- No chemotherapy was given
- Status: CR (12+)
- MRD <0.01% cells

Stephan Grupp, NEJM 2013

Trafficking of CAR T to CNS in ALL

OS in relapsed/refractory ALL

ALL: Mechanisms of Resistance to CART-19

- In pediatric and adult ALL, there is a >90% CR at 1 month
- To date, there have been 15 relapses in the first 50 patients given CART19:
 - No patient has relapsed beyond year
 - 15 patients have relapsed
 - Early relapses associated with loss of B cell aplasia (n=5)
 - Late relapses are associated with target loss (CD19 negative leukemia, n=10)

Grupp, et al. *NEJM 2*013. Maude, et al. NEJM 2014.

Common toxicities with CAR 19

- Cytokine release syndrome
 - Characterized clinically by fever, hypotension, sepsis-like picture
 - Clinical lab elevations in C-reactive protein, ferritin, may have other lab evidence of organ damage (DIC, transaminitis, AKI, etc.)
 - Severe CRS is very similar to HLH/MAS
 - Mechanism related to high levels of circulating IL-6, IFN gamma
 - Managed primarily with anti-cytokine therapy
- Neurological toxicity
- B cell aplasia on-target effect

CRS Grading

Grade	Description of Symptoms	
1 Mild	Not life-threatening, require only symptomatic treatment such as antipyretics and anti-emetics (e.g., fever, nausea, fatigue, headache, myalgias, malaise)	
2 Moderate	 Require and respond to moderate intervention: Oxygen requirement < 40%, or Hypotension responsive to fluids or low dose of a single vasopressor, or Grade 2 organ toxicity (by CTCAE v4.03) 	
3 Severe	 Require and respond to aggressive intervention: Oxygen requirement ≥ 40%, or Hypotension requiring high dose of a single vasopressor (e.g., norepinephrine ≥ 20 µg/kg/min, dopamine ≥ 10 µg/kg/min, phenylephrine ≥ 200 µg/kg/min, or epinephrine ≥ 10 µg/kg/min), or Hypotension requiring multiple vasopressors (e.g., vasopressin + one of the above agents, or combination vasopressors equivalent to ≥ 20 µg/kg/min norepinephrine), or Grade 3 organ toxicity or Grade 4 transaminitis (by CTCAE v4.03) 	
4 Life-threatening	 Life-threatening: Requirement for ventilator support, or Grade 4 organ toxicity (excluding transaminitis) (by CTCAE v4.03) 	
5 Fatal	Death	

Adapted from (Lee 2014)

HLH/MAS

- Macrophage activation syndrome (MAS) or hemophagocytic lymphohistiocytosis (HLH).
- Characterized by high fevers, hepatosplenomegaly, liver dysfunction, coagulopathy, hypofibrinogenemia, and profound hyperferritinemia.
 - Often elevated C-reactive protein (CRP), soluble interleukin-2 receptor (sIL-2R), triglycerides, and variable transaminases
- Histological evidence of macrophage and hemophagocytosis noted on bone marrow biopsy at peak of CRS.
- Resolves with tocilizumab and/or cessation of CRS.

Neurological Side Effects

- Can occur in the presence or absence of CRS
- Symptoms include confusion, delirium, expressive aphasia, obtundation, myoclonus, seizure-like activity and frank seizure
- In some instances neurologic symptoms may be the earliest sign of sCRS
- Symptom onset can be early (day 5-7) with/without CRS or delayed even after the resolution of CRS
- Mechanism and management evolving; usually transient
- More responsive to steroids than anti-cytokine therapy

CSF (day 23)

Rare/Theoretical Toxicities with engineered T cells

- On-target
- Off-target (cross-reactivity)
- Bystander innate cells (i.e. systemic CRS)
- Allergy
- Autonomous signaling/GvHD
- Integration site oncogenesis
- Replication competent virus

Present status of CD19 CAR T cells for ALL and NHL

Race for Registration: CD19 CARs for ALL in pediatrics and adults, and NHL

Ongoing Phase II trials

New targets for 2nd generation CARs (similar design as anti-CD19)

- Hematologic malignancies
 - AML (CD123, CD33)
 - Hodgkin's (CD30)
 - Multiple myeloma (BCMA bluebird, Novartis)
- Solid tumors
 - Glioblastoma (EGFRvIII)
 - Mesothelin (ovarian, mesothelioma, lung)
 - Prostate (PSMA)
 - Melanoma (cmet)

Hurdles for solid tumors

- Specific antigen targets
 - What's a dispensable cell or tissue?
 - How to survey in pre-clinical setting?
 - How will you measure it on a per-patient/per-tumor basis?
- T cell trafficking
 - How will you measure it? How many is enough?
- T cell persistence
- Inhibitory microenvironment
 - Are CAR T cells as sensitive to inhibition by PD1/TIM3/LAG3 as normal T cells? Does the signaling domain matter?

Take home points about CAR T cells

- Living drugs
 - Highest PK typically at day 7-14
- Long-lived cells (PK of months/years!)
- Traffic everywhere (including CNS)
- Make bioactive cytokines/engage other cells
 - Cytokine release syndrome, macrophage activation syndrome
- Activity (on target and off target) occurs anywhere and at time of peak expansion
- Multiple different CAR designs; new ones to reduce toxicity and extend to other tumors are on the horizon