Society for Immunotherapy of Cancer (SITC)

Oncolytic Viruses and Their Application to Cancer Immunotherapy

Ding Wang, MD, PhD Josephine Ford Cancer Institute

Advances in Cancer Immunotherapy[™] - Michigan July 31, 2015

> Presentation originally prepared and presented by Willem W. Overwijk, PhD MD Anderson Cancer Center Houston, TX, USA

> > Society for Immunotherapy of Cancer

Disclosures

None for SITC presentation

Phase I Clinical Trials supported by:

Abbvie, AstraZeneca/MedImmune, EMD-Serono, Celgene, GSK, ImClone/Lilly, Millennium/Takeda, Novartis, Regeneron, TEVA, etc.

NCI/Intergroups: NSABP/RTOG/GOG (NRG), SWOG

Overview

- What are oncolytic viruses (OV)
- Why use oncolytic viruses in cancer therapy
- What is a Cancer Vaccine
- Genetic basis for cancer vaccine and anti-cancer immunity
- Oncolytic viruses-mediated cancer immunotherapies
- Research and clinical development of immunotherapies in cancer

What Are Oncolytic Viruses

• Oncolytic viruses (OVs)

- Preferentially select cancer cells (viral tropism) as their cellular replication hosts
- Kill infected cancer and endothelial cells via direct oncolysis
- Indirectly kill uninfected cells
 - Tumor vasculature targeting
 - By stander effect
- Mechanism of actions of OVs via multimodal immunogenic cell death (ICD)
 - Autophagy
 - Efficient cross-present TAA
 - Adaptive anticancer immunity
 - Genetic engineered
 - GM-CSF (T-VEC & Pexa-Vec)
 - Toll-like receptor (TLR)

http://www.nature.com/nature/journal

What Are Oncolytic Viruses

- Non-pathogenic in humans and viruses naturally replicate in cancer cells
 - Autonomous parvoviruses
 - Myxoma virus (poxvirus)
 - Newcastle disease virus (Paramyxovirus)
 - Reovirus
 - Seneca valley virus
- Viruses can be genetically manipulated as vaccine vectors
 - Measles virus
 - Poliovirus (picornavirus)
 - Vaccinia virus (poxvirus)
 - Adenovirus
 - Herpes simplex virus
 - Vesicular stomatitis virus (rhabdovirus)

Why Use Oncolytic Viruses

- Oncolytic viruses can selectively (*Tropism*) infect and damage cancerous tissues without causing harm to normal tissues
- Tropism: the ability of a virus to recognize cell surface features that mediate viral genome entry into the host cell
- Each virus has a specific cellular tropism that determines which tissues are preferentially infected
 - Rabies and polio to neurons
 - Hepatitis A/B/C viruses
 - HIV toward T-helper cells

Bartlett *et al. Molecular Cancer* 2013 **12**:103 doi:10.1186/1476-4598-12-103

Schematic representation of tumor-selective viral replication and oncolysis

David Kirn, et al. Nature Medicine 7, 781 - 787 (2001)

Overview

- What are oncolytic viruses (OV)
- Why use oncolytic viruses in cancer therapy
- What is a Cancer Vaccine
- Genetic basis for cancer vaccine and anti-cancer immunity
- Oncolytic viruses-mediated cancer immunotherapies
- Research and clinical development of immunotherapies in cancer

What is a Cancer Vaccine?

peptide(s)

A **preparation** of a **tumor antigen** (usually protein) that upon administration stimulates tumor-specific antibodies and/or activation of T cells

Result: specific anti-tumor immunity

What are Tumor-Associated Antigens?

Three Ways for Self Antigens to Become Tumor Antigens

?Relationship between TAA expression and histologic differentiation?

Finn OJ. N Engl J Med 2008;358:2704-2715.

The NEW ENGLAND JOURNAL of MEDICINE

Tumor Antigens Eliciting T-Cell Immunity When Presented to Naive T Cells by Antigen-Presenting Dendritic Cells.

Finn OJ. N Engl J Med 2008;358:2704-2715.

Immunostimulatory and Immunosuppressive Forces in the Tumor Microenvironment.

The balance between the immunostimulation and immunosuppression

What is a Cancer Vaccine?

When could cancer vaccines be useful?

Cancer Prevention

• HPV vaccine, HBV vaccine, etc.

• Cancer therapy

Overview

- What are oncolytic viruses (OV)
- Why use oncolytic viruses in cancer therapy
- What is a Cancer Vaccine
- Genetic basis for cancer vaccine and anti-cancer immunity
- Oncolytic viruses-mediated cancer immunotherapies
- Research and clinical development of immunotherapies in cancer

The prevalence of somatic mutations across human cancer types

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Genetic Basis for Clinical Response to CTLA-4 Blockade in Melanoma

Alexandra Snyder, M.D., Vladimir Makarov, M.D., Taha Merghoub, Ph.D.,
Jianda Yuan, M.D., Ph.D., Jesse M. Zaretsky, B.S., Alexis Desrichard, Ph.D.,
Logan A. Walsh, Ph.D., Michael A. Postow, M.D., Phillip Wong, Ph.D.,
Teresa S. Ho, B.S., Travis J. Hollmann, M.D., Ph.D., Cameron Bruggeman, M.A.,
Kasthuri Kannan, Ph.D., Yanyun Li, M.D., Ph.D., Ceyhan Elipenahli, B.S.,
Cailian Liu, M.D., Christopher T. Harbison, Ph.D., Lisu Wang, M.D.,
Antoni Ribas, M.D., Ph.D., Jedd D. Wolchok, M.D., Ph.D.,
and Timothy A. Chan, M.D., Ph.D.

Snyder A et al. N Engl J Med 2014;371:2189-2199.

(Ipilumab) in a patient with cutaneous melanoma (BMS Data)

Mechanism of Actions: Neo-Antigens and Anti-A Mutational Load Clinical Response

• Neoantigens landscape present in melanoma

- TCR cross-reactivity and positive selection in the thymus and sculpting by evolution in TCR
- HLA genes may have helped to mold the motifs
- T-cell–recognition motifs present in T cells that underlie immunotherapy response
- Previously exposed to organisms with antigens homologous to tumor neoantigens and may have undergone priming

Snyder A et al. N Engl J Med 2014;371:2189-2199.

Clinical Trials of Cancer Vaccines

415 open studies using cancer vaccines on 30JUL2015 (www.clinicaltrial.gov)

ols	Help						
	Recruiting	Safety & Efficacy Study of EGF Cancer Vaccine to Treat Stage IV Biomarker Positive, Wild Type EGF-R NSCLC Patients					
		Condition:	Carcinoma, Non-Small-Cell Lung				
		Intervention:	Biological: EGF Vaccine				
3	Recruiting	A Phase I Study With a Personalized NeoAntigen Cancer Vaccine in Melanoma					
		Condition:	: Melanoma				
		Interventions:	Biological: Poly-ICLC; Biological: Peptides				
	Not yet	An Individualized Anti-Cancer Vaccine in Advanced Hepatocellular Carcinoma Subjects					
	recruiting	Condition:	Advanced Adult Hepatocellular Carcinoma				
		Interventions:	Biological: AlloVax; Biological: AlloStim; Biological: CRCL				
5	Recruiting	cruiting Safety Study of a Dendritic Cell-based Cancer Vaccine in Melanoma					
		Conditions:	Melanoma; Tumor Vaccines; Effects of Immunotherapy				
		Intervention:	Biological: GeniusVac-Mel4				
6	Recruiting	Ph I Personalized NeoAntigen Cancer Vaccine With Radiotherapy for Patients With MGMT Unmethylated, No Diagnosed Glioblastoma					
		Conditions:	Glioblastoma; MGMT-unmethylated Glioblastoma; Gliosarcoma;				
			Glioblastoma With Oligodendroglial Features; Giant Cell Glioblastoma; Glioblastoma Multiforme				
		Interventions:	Radiation: Radiation Therapy; Biological: Personalized NeoAntigen Vaccine				
	Not yet recruiting	Safety and Immunogenicity of a Personalized Synthetic Long Peptide Breast Cancer Vaccine Strategy in Patients With Persistent Triple-Negative Breast Cancer Following Neoadiuvant Chemotherapy					
	-	Conditions:	Triple Negative Breast Cancer; Triple Negative Breast Neoplasms; Triple-				
			Negative Breast Cancer				
		Interventions:	Biological: Personalized synthetic long peptide vaccine (Poly ICLC); Drug: Poly ICLC				
	Not yet	Immunotherapy of Metastatic Colorectal Cancer					
	recruiting	Condition:	Colorectal Cancer Metastatic				
		Interventions:	Biological: AlloStim; Procedure: Cryoablation				
	Not yet recruiting	Neoadjuvant/Adjuvant GVAX Pancreas Vaccine (With CY) With or Without Nivolumab Trial for Surgically Resectable Pancreatic Cancer					
		Condition:	Pancreatic Cancer				
		Interventions:	Drug: Cyclophosphamide; Biological: GVAX pancreatic cancer; Drug: Nivolumab				
0	Recruiting	To Identify HLA-A1101-restricted Peptide Epitopes Derived From Novel Oncoantigens (URLC10, KIF20A, and CDCA1) Applicable for Cancer Vaccine in Singapore					

Clinical Anti-Cancer Responses

- MAGE-A3 is a tumorspecific protein
 - <u>melanoma</u>, <u>non-small cell</u> <u>lung cancer</u>, <u>hematologic</u> <u>malignancies</u>
- Expression of MAGE-A3 in lung adenocarcinoma were associated with shorter survival
- Targeting MAGE-A3:
 - A fusion protein of MAGE-A3 and <u>Haemophilus</u> <u>influenzae protein D</u>, combined with a proprietary immunoadjuvant

Robert A. Morgan, et al. J Immunother. 2013 February ; 36(2): 133–151.

MAGE-A3 TCR Related Neurologic Toxicity

- Neurological toxicities observed (patient 5, 7 & 8)
- Histological consistent with necrotizing leukoencephalopathy, multifocal correlating diffuse white matter damage (MRI images) with sparing of gray matter

Robert A. Morgan, et al. J Immunother. 2013 February ; 36(2): 133–151.

Mutated Peptides as Cancer Antigens

From Mutation to Vaccine: Genetically Engineer & "Amplify" tumor-specific, mutated antigens

Overview

- What are oncolytic viruses (OV)
- Why use oncolytic viruses in cancer therapy
- What is a Cancer Vaccine
- Genetic basis for cancer vaccine and anti-cancer immunity
- Oncolytic viruses-mediated cancer immunotherapies
- Research and clinical development of immunotherapies in cancer

OV-mediated effects in tumor.

E. Antonio Chiocca, and Samuel D. Rabkin Cancer Immunol Res 2014;2:295-300

Cancer Immunology Research

Oncolytic polio virotherapy of cancer

PVS-RIPO (C): a nonpathogenic oncolytic poliovirus recombinant underlying the pre-clinic and clinical development against glioblastoma

Brown MC., et al. Cancer, 120 (21): 3277-3286, 2014

Oncolytic polio virotherapy of cancer

Brown MC., et al. Cancer, 120 (21): 3277-3286, 2014

Poliovirus Receptor CD155targeted Oncolysis of Glioma

Tumor/

Cell line no.	Location	Histological classification
DU0108	L temporal	Glioblastoma multiforme, grade IV
DU0110	L parietal	Anaplastic astrocytoma, grade III
DU0308	R temporal	Glioblastoma multiforme, grade IV
DU0722	R temporal	Glioblastoma multiforme, grade IV
DU1107	R parietal	Glioblastoma multiforme, grade IV
DU1386	R temporal	Anaplastic astrocytoma, grade III

Merrill, MK, et al. Neuro-Oncol. July 2004

Duke University PVS-RIPO trial Eligibilities: Recurrent glioblastoma patients with only one tumor. The tumor must be surgically accessible; the size must be no smaller than 1 cm and no larger than 5.5 cm, and the tumor must be located at least 1 cm away from the ventricles

Patient treated on PVS-RIPO 2 months after treatment

Same patient treated on PVS-RIPO 9 months after treatment

The structure of the PVS-RIPO virus:

The Virus particle consists of a protein shell (blue, red and green shapes) arranged in a symmetric structure. In this image, the particle has been "cracked open," to reveal the virus genome (yellow, pink), which is surrounded by the protein shell. The PVS-RIPO genetic code is based on the Sabin vaccine (yellow) with a piece of genetic information from a common cold virus spliced in (pink)

Overview

- What are oncolytic viruses (OV)
- Why use oncolytic viruses in cancer therapy
- What is a Cancer Vaccine
- Genetic basis for cancer vaccine and anti-cancer immunity
- Oncolytic viruses-mediated cancer immunotherapies
- Research and clinical development of immunotherapies in cancer

and tumor-specific adaptive immunity; (B) novel targeted agents may inhibit the suppres-

Effects of Radiation on Tumors

Effects on Tumor Microenvironment	RT Dose/Regimen		
Enhance antigen uptake and presentation by antigen-presenting cells	Local x-irradiation $(10 \text{ Gy} \times 1)$		
Promote maturation of antigen-specific DCs	Ablative local x-irradiation $(20 \text{Gy} \times 1)$		
Induction of chemokines by intratumoral DCs	One dose 10 or 20 Gy applied on cell lines		
to attract effector cells	Whole body with a single dose of 1000 rads		
	Ablative local x-irradiation $(20 \text{ Gy} \times 1)$		
Enhanced NK cell function and CXCL16 secretion	γ -irradiation (2.78 Gy/min)		
Increase in secretion of immune stimulatory factors	In vitro γ - irradiation (20 Gy)		
that can change tumor cell phenotype			
Increase in intratumoral infiltration by	In vitro (10-25 Gy) over a period of 3 d, and local		
CD45 ⁺ /CD11b ⁺ myeloid-derived cells	γ -irradiation of mice (25 Gy)		
Enhanced epitope spreading	In vitro ionizing radiation (4.5 Gy/min)		
Reduction of tumor mass resulting in increased	In vitro ionizing radiation (2-10 Gy)		
T-cell infiltration	Three distinct regimens of local ionizing radiotherapy		
	$(20 \text{ Gy} \times 1, 8 \text{ Gy} \times 3, \text{ or } 6 \text{ Gy} \times 5 \text{ fractions in consecutive days})$		
	In vitro radiation at $1 \times (0, 2.5, 5, 8, \text{ and } 16 \text{ Gy})$		
Effects on malignant cells			
Induction of immunogenic cell death	Local irradiation $1 \times (15 \text{ Gy})$ or fractionated $(5 \times 3 \text{ Gy})$		
Enhanced antigen presentation by upregulation	In vitro γ -irradiation (20 Gy)		
of MHC-1 expression	In vitro (10-25 Gy) over a period of 3 d, and local γ -irradiation of mice (25 Gy)		
	One dose 10 or 20 Gy applied on cell lines		
Upregulation of TNF-α, IL-1β, GM-CSF, and IL-6 secretion	In vitro x-radiation		
Increased expression of tumor-associated antigens	In vitro γ -irradiation (20 Gy)		
Upregulation of the death receptor and engagement of the Fas/Fas ligand pathway	In vitro ionizing radiation (4.5 Gy/min)		

Wotchok, et al. Am J Clin Oncol, 38: 90-97, 2015

Cancer vaccines can be combined with various other treatments such as standard of care approaches, checkpoint blockade, immunotherapy, and strategies to reduce suppression.

Lisa H Butterfield BMJ 2015;350:bmj.h988

Summary & Conclusions

- Oncolytic viruses (OVs) can selectively replicate, thereafter, kill cancer cells with minimal risk of harming normal tissue
- Oncolytic viruses (OVs) can effectively induce immune response to themselves and to the infected tumor cells
- Oncolytic viruses (OVs) can be genetically engineered
 - Nonpathogenic
 - Armed with immunomodulatory transgenes
- Oncolytic viruses (Ovs) provides a diverse platform for immunotherapeutic research and potentials for their clinical applications
- Cancer vaccines are both important in cancer preventions and therapies
- Cancer-specific immunity depends on
 - Balance between host immunostimulation and immunosuppression
 - The presence of tumor-specific antigen (neo-antigen)
 - Mutation load and level of each neo-antigen expression
 - Other factors

Thank You !!!

Questions:

dwang1@hfhs.org

Back up Slides

Peptide-based Cancer Vaccines

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Vaccination against HPV-16 Oncoproteins for Vulvar Intraepithelial Neoplasia

Gemma G. Kenter, M.D., Ph.D., Marij J.P. Welters, Ph.D., A. Rob P.M. Valentijn, Ph.D., Margriet J.G. Lowik, Dorien M.A. Berends-van der Meer, Annelies P.G. Vloon, Farah Essahsah, Lorraine M. Fathers, Rienk Offringa, Ph.D., Jan Wouter Drijfhout, Ph.D., Amon R. Wafelman, Ph.D., Jaap Oostendorp, Ph.D., Gert Jan Fleuren, M.D., Ph.D., Sjoerd H. van der Burg, Ph.D., and Cornelis J.M. Melief, M.D., Ph.D.

79% clinical response 47% CR (>24 months)

Immune response can correlate with clinical outcome

medicine AUGUST 2012

Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival

Steffen Walter^{1,21}, Toni Weinschenk^{1,21}, Arnulf Stenzl², Romuald Zdrojowy³, Anna Pluzanska⁴, Cezary Szczylik⁵, Michael Staehler⁶, Wolfram Brugger⁷, Pierre-Yves Dietrich⁸, Regina Mendrzyk¹, Norbert Hilf¹, Oliver Schoor¹, Jens Fritsche¹, Andrea Mahr¹, Dominik Maurer¹, Verona Vass¹, Claudia Trautwein¹, Peter Lewandrowski¹, Christian Flohr¹, Heike Pohla^{9,10}, Janusz J Stanczak¹¹, Vincenzo Bronte¹², Susanna Mandruzzato^{13,14}, Tilo Biedermann¹⁵, Graham Pawelec¹⁶, Evelyna Derhovanessian¹⁶, Hisakazu Yamagishi¹⁷, Tsuneharu Miki¹⁸, Fumiya Hongo¹⁸, Natsuki Takaha¹⁸, Kosei Hirakawa¹⁹, Hiroaki Tanaka¹⁹, Stefan Stevanovic²⁰, Jürgen Frisch¹, Andrea Mayer-Mokler¹, Alexandra Kirner¹, Hans-Georg Rammensee²⁰, Carsten Reinhardt^{1,21} & Harpreet Singh-Jasuja^{1,21}

Vaccination With Patient-Specific Tumor-Derived Antigen in First Remission Improves Disease-Free Survival in Follicular Lymphoma

Stephen J. Schuster, Sattva S. Neelapu, Barry L. Gause, John E. Janik, Franco M. Muggia, Jon P. Gockerman, Jane N. Winter, Christopher R. Flowers, Daniel A. Nikcevich, Eduardo M. Sotomayor, Dean S. McGaughey, Elaine S. Jaffe, Elise A. Chong, Craig W. Reynolds, Donald A. Berry, Carlos F. Santos, Mihaela A. Popa, Amy M. McCord, and Larry W. Kwak

ORIGINAL ARTICLE

gp100 Peptide Vaccine and Interleukin-2 in Patients with Advanced Melanoma

Douglas J. Schwartzentruber, M.D., David H. Lawson, M.D., Jon M. Richards, M.D., Ph.D., Robert M. Conry, M.D.,
Donald M. Miller, M.D., Ph.D., Jonathan Treisman, M.D., Fawaz Gailani, M.D., Lee Riley, M.D., Ph.D., Kevin Conlon, M.D., Barbara Pockaj, M.D.,
Kari L. Kendra, M.D., Ph.D., Richard L. White, M.D., Rene Gonzalez, M.D., Timothy M. Kuzel, M.D., Brendan Curti, M.D., Phillip D. Leming, M.D.,
Eric D. Whitman, M.D., Jai Balkissoon, M.D., Douglas S. Reintgen, M.D.,
Howard Kaufman, M.D., Francesco M. Marincola, M.D., Maria J. Merino, M.D., Steven A. Rosenberg, M.D., Ph.D., Peter Choyke, M.D., Don Vena, B.S., and Patrick Hwu, M.D.

gp100 peptide vaccine has activity in metastatic melanoma

Stage IV and locally advanced stage III melanoma patients

High-dose IL-2 +/- gp100 peptide in IFA (= water-in-oil emulsion)

	IL-2+gp100/IFA	IL-2	p-value
Overall response rate	22.1%	9.7%	0.022
Progression free survival	2.9 months	1.6 months	0.010
Median overall survival	17.6 months	12.8 months	0.096

Phase III Trial of Ipilimumab Plus gp100 Vaccine Versus gp100 Vaccine Versus Ipilimumab as Second-line Therapy in Advanced Melanoma: Treatment Schema

Primary endpoint: best ORR (original), changed to OS before unblinding/analysis Secondary endpoints include: best ORR, duration of response, PFS, TTP

Hodi FS et al. N Engl J Med 2010;363:711-723

Ipilimumab Improves Overall Survival compared to control

