Efficacy of Anti-ICOS Agonist Monoclonal Antibodies in Preclinical Models Provides a Rationale for Clinical Development for cancer immunotherapy

- Michael J Briskin, Ph.D.
 - Jounce Therapeutics SITC 2015

Disclosures

Dr. Michael J. Briskin

The following relationships exist related to this presentation:

• Current VP of research at Jounce Therapeutics

Jounce Translational Approach: Iterative Clinical and Preclinical Data to Pursue Relevant Targets and Drive Programs

ICOS: A Member of the B7/CD28-Superfamily

- ICOS is up-regulated on activated CD4⁺ T effector and CD4⁺ T regulatory cells
- Its ligand (ICOSL) is expressed on APCs and B cells
- ICOS ligation via ICOSL stimulates activation of Teff cells
- ICOS binding to ICOSL on B cells leads to antibody production

ICOS is Up-regulated on CD4⁺ T cells of Patients Who Respond to Anti-CTLA-4 Therapy: Clinical Observations Translated to a Pre-clinical Model

- Sustained increase in ICOS on peripheral CD4⁺ T cells associated with positive clinical outcome
- Increase in ICOS⁺ TILs also observed post-anti-CTLA-4 treatment
- In a pre-clinical tumor model. ICOS agonism in the context of anti-CTLA-4 mAb results in enhanced mouse survival

Mechanisms of a Jounce Anti-ICOS Antibody

Mechanisms of Jounce Anti-ICOS Antibodies

Anti-ICOS mAb Displays Agonistic Activity

Confidential | © 2015 Jounce Therapeutics

Anti-ICOS Displays Agonist but NOT Super-Agonist Activity

© 2015 Jounce Therapeutics

Select Anti-ICOS mAbs are Efficacious in a Syngeneic Tumor Model

Experimental Design:

Average Tumor Volume Over Time:

ICOS Antibodies Create Durable Effects

Days after tumor challenge

Days after tumor <u>re-</u>challenge

Mechanisms of Jounce Anti-ICOS Antibodies

12

Treatment with Anti-ICOS Antibodies Results in Reduction in FoxP3+ Tregs in Tumors

Selective reduction of Tregs <u>in vivo</u>:

- Treatment with anti-ICOS mAbs reduces tumor-associated Tregs, but not Teffs
- CD8:Treg ratio is increased following anti-ICOS treatment
- No change in T cell subsets or ratios observed in spleen, lymph nodes, or peripheral blood (data not shown)

Anti-ICOS mAbs Selectively Reduce Tregs vs Teffs

Potential Combination Approaches

Chen and Mellman, Immunity (2013)

ICOS and PD-1 Antibody Combination is Highly Effective

Positioning ICOS Therapeutics

Hypothesis: ICOS CD4 T cells are Essential for Response to Anti-ICOS Therapy

Quantitative Evaluation of ICOS Across Human Tumor Types

ICOS High

ICOS Medium

ICOS Low

100-200 tumors per indication or subtype

ICOS Density in Individual Patients in NSCLC and HNSCC

Summary

- Anti-ICOS antibodies were generated with dual function:
 - Agonistic activity on Teff cells
 - Capacity to selectively deplete Tregs
- Anti-ICOS antibodies are efficacious in syngeneic tumor models and induce durable protective immunity
- Anti-ICOS antibodies may be effectively combined with other immunotherapeutics, such as anti-PD1
- Immunohistochemical analysis of clinical samples has identified key indications for our lead ICOS therapeutic
 - Allows for patient enrichment and hypothesis testing in early clinical trials

Acknowledgements

MD Anderson

- Jim Allison
- Pam Sharma
- Ignacio Wistuba

University of Chicago

• Tanguy Seiwart

Jounce Therapeutics

- Jennifer Michaelson
- Kutlu Elpek
- Christopher Harvey
- Ellen Duong
- Tyler Simpson
- Jenny Shu
- Tong Zi
- Amit Deshpande
- Lindsey Shallberg
- Matt Wallace
- Sriram Sathy
- Robert Mabry
- Debbie Law