

Immunotherapy for the Treatment of Head and Neck Cancer

Ezra Cohen, MD
University of California San Diego

Disclosure Information

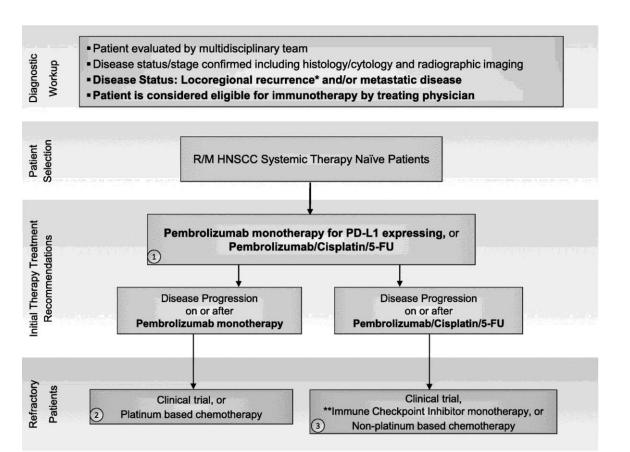
Consulting Fees: ALX Oncology, Ascendis Pharma, Bayer, BioLineRx, Bristol Myers Squibb, Debiopharm, Dynavax Technologies, Merck KGaA, Merck & Co., Regeneron Pharmaceuticals, and Sanofi

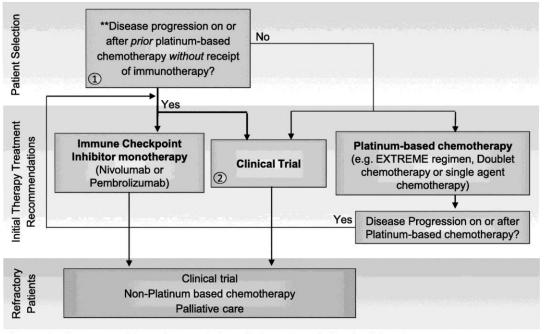
Ownership Interest (<5%): Kinnate Biopharma

I will be discussing non-FDA approved indications during my presentation.

Outline

- Approved immunotherapies in head and neck cancers
- Biomarkers and immunotherapy responsiveness
- Unique considerations for head and neck cancers
- Future directions




Immunotherapy in head and neck cancer treatment

^{*}Locoregional recurrence without salvage surgical or radiation option or declines local therapies

Diagnostic Workup

- Patient evaluated by multidisciplinary team and is eligible for immunotherapy
- Disease status/stage confirmed including histology/cytology and radiographic imaging
- Disease Status: Locoregional recurrence* and/or metastatic disease
- Patient is considered eligible for immunotherapy by treating physician

^{*}Locoregional recurrence without salvage surgical or radiation option or declines local therapies

^{**}Disease Progression on or after Platinum-Based Therapy: Disease progression on or after platinum-based therapy including within 6 months of platinum-based CRT given in the locally advanced setting. Patients that receive but cannot tolerate platinum-based chemotherapy would also be included in this category.

HNSCC: head and neck squamous cell carcinoma

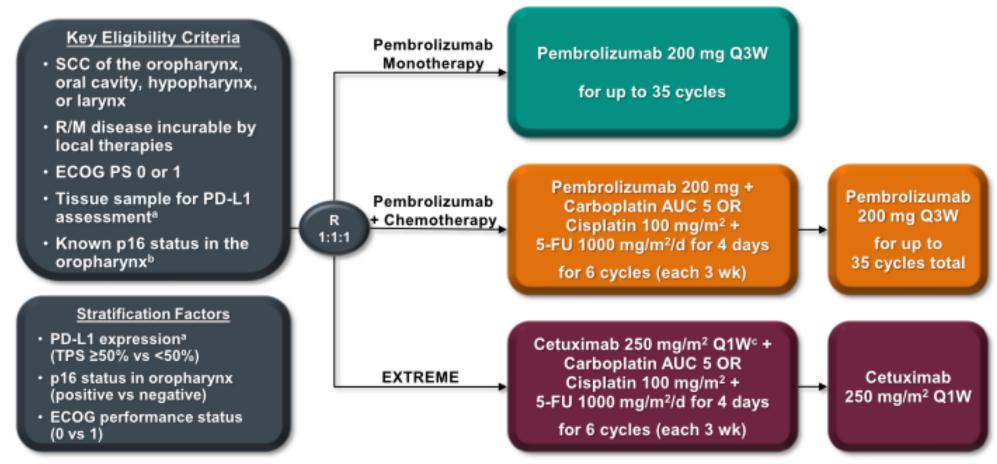
^{**}Refer to Figure 2. Initial Therapy Treatment Recommendations: Immune Checkpoint Inhibitor monotherapy (nivolumab or pembrolizumab)

Approved checkpoint inhibitors in head and neck cancers

Drug	Approved	Indication	Dose
Pembrolizumab	2016	Recurrent/metastatic HNSCC, progression on/after chemotherapy	200 mg Q3W or 400 mg Q6W
Nivolumab	2016	Recurrent/metastatic HNSCC, progression on/after chemotherapy	240 mg Q2W or 480 mg Q4W
Pembrolizumab + platinum + fluorouracil	2019	Recurrent/metastatic HNSCC 1st line – all patients	200 mg Q3W or 400 mg Q6W
Pembrolizumab	2019	Recurrent/metastatic HNSCC 1 st line – PD-L1 CPS ≥ 1	200 mg Q3W or 400 mg Q6W

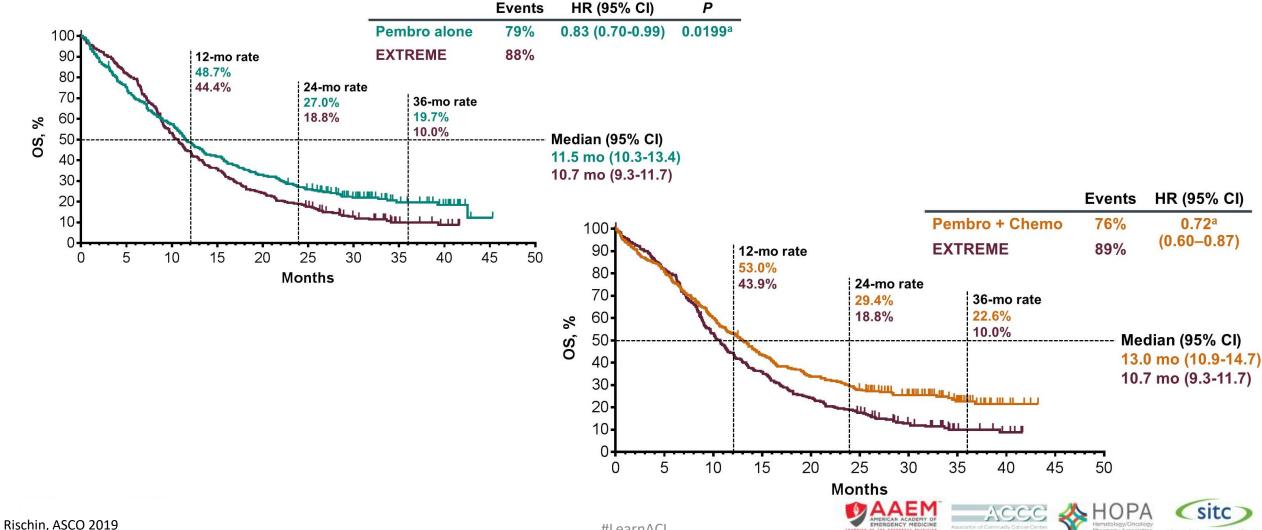
Clinical trials in HNSCC

Trial	Patient selection criteria	Treatment arm(s)	N	ORR	Median PFS (months)	Median OS (months)
KEYNOTE-048	Untreated R/M HNSCC (total population)	Pembrolizumab	301	16.9%	2.3	11.5
		Pembrolizumab + chemo	281			13.0
		Cetuximab + chemo	300	36.0%	5.2	10.7
KEYNOTE-012	R/M HNSCC	Pembrolizumab	192	18% (PD-L1+: 21%, PD-L1-: 6%)	2.1	8
CheckMate 141	R/M HNSCC with progression on platinum	Nivolumab	240	13.1% (PD-L1+: 17.7%, PD-L1-: 11.8%)	2.0	7.7
		Investigator's choice	121	5.8%	2.3	5.1
KEYNOTE-040	R/M HNSCC with progression on platinum	Pembrolizumab	247	14.6%	2.1	8.4
		Investigator's choice	248	10.1%	2.3	6.9



KEYNOTE-048: Pembrolizumab +/Chemotherapy in newly diagnosed R/M HNSCC

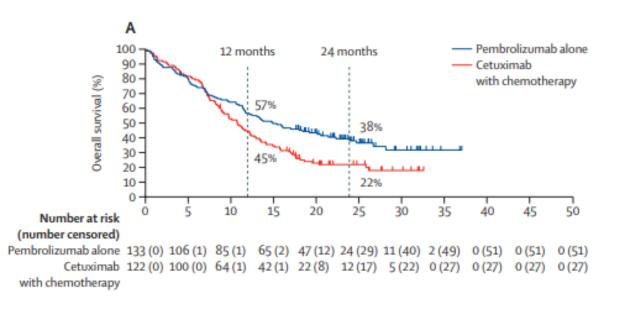
"Assessed using the PD-L1 IHC 22C3 pharmDx assay (Agilent). TPS = tumor proportion score = % of tumor cells with membranous PD-L1 expression. "Assessed using the CINtec p16 Histology assay (Ventana); cutpoint for positivity = 70%. "Following a loading dose of 400 mg/m².

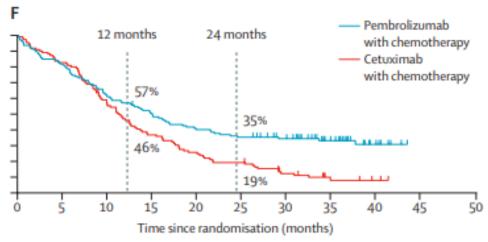


KEYNOTE-048: Overall survival in the total population

© 2020-2021 Society for Immunotherapy of Cancer

#LearnACI





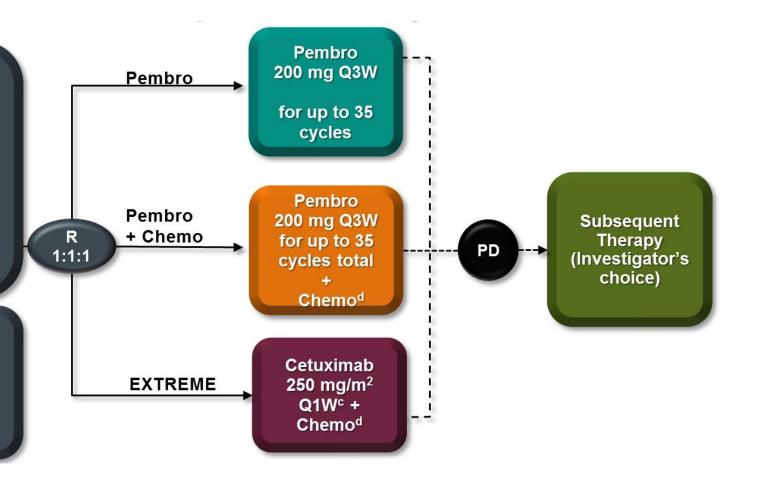
KEYNOTE-048: Overall survival in the PD-L1 positive population

PD-L1 CPS ≥1

PD-L1 CPS ≥1

126 (0) 102 (0) 77 (0) 60 (1) 50 (1) 44 (1) 36 (8) 21 (22) 4 (38) 0 (42) 0 (42)

110 (0) 91 (0) 60 (1) 40 (1) 26 (1) 19 (2) 11 (4) 4 (8) 1 (11) 0 (12) 0 (12)

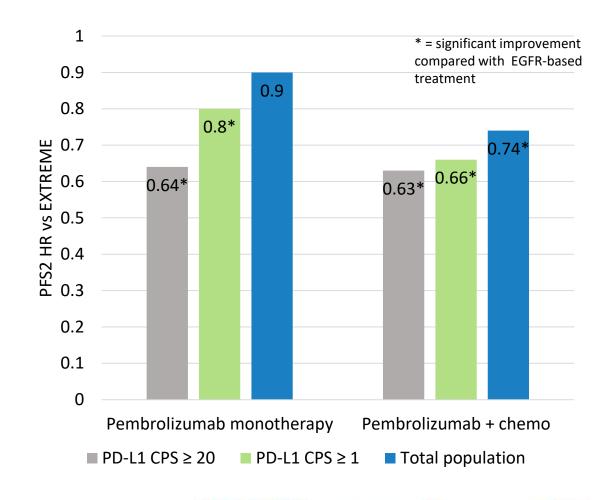

KEYNOTE-048: Outcomes on subsequent therapy

Key Eligibility Criteria

- SCC of the oropharynx, oral cavity, hypopharynx, or larynx
- R/M disease incurable by local therapies
- ECOG PS 0 or 1
- Tissue sample for PD-L1 assessment^a
- Known p16 status in the oropharynx^b

Stratification Factors

- PD-L1 expression^a (TPS ≥50% vs <50%)
- p16 status in oropharynx (positive vs negative)
- ECOG performance status (0 vs 1)

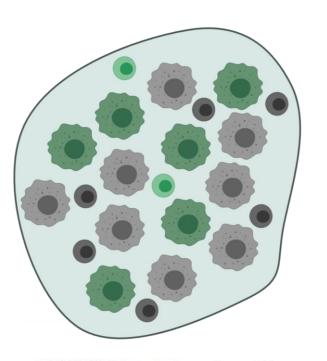


KEYNOTE-048: Outcomes on subsequent therapy

- After progression, most common next treatment was a chemotherapy regimen
- PFS2: Progression-free survival on second treatment (after progression on KEYNOTE-048 treatment)
- Benefits seen for patients who received pembrolizumab regimens up-front
- Provides support to use of immunotherapy in front-line setting

Outline

- Approved immunotherapies in head and neck cancers
- Biomarkers and immunotherapy responsiveness
- Unique considerations for head and neck cancers
- Future directions



PD-L1: TPS vs CPS

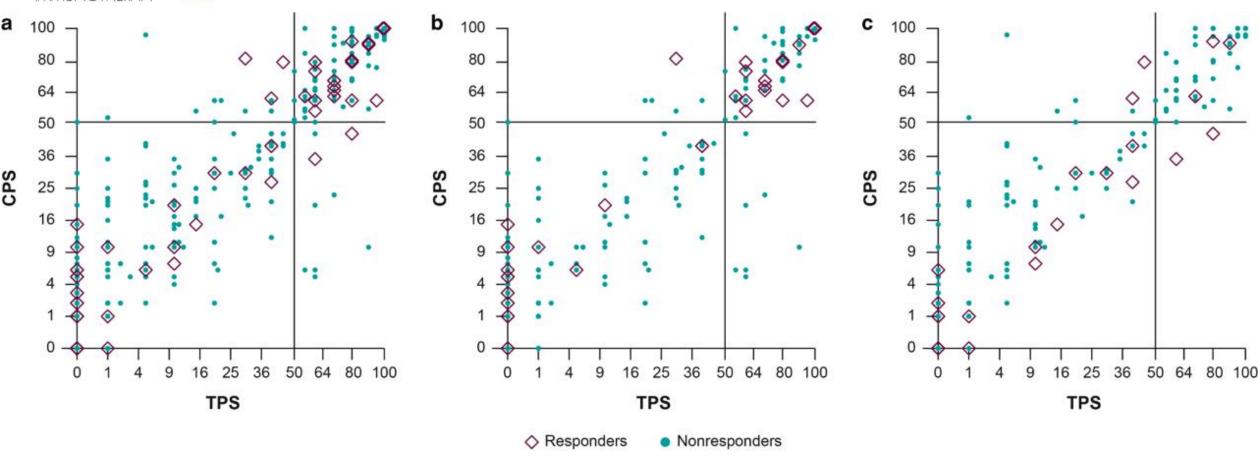
$$TPS = \frac{\text{\# of PD-L1 positive tumor cells}}{number of viable tumor cells} \times 100$$

$$CPS = \frac{\# \ of \ PD-L1 \ positive \ cells \ (tumor \ cells, lymphocytes, macrophages)}{total \ number \ of \ tumor \ and \ immune \ cells} \times 100$$

- PD-L1-positive immune cell
- PD-L1-negative immune cell
- PD-L1-positive tumor cell
- PD-L1-negative tumor cell

$$TPS = \frac{6 \text{ positive tumor cells}}{14 \text{ total tumor cells}} \times 100 = 43$$

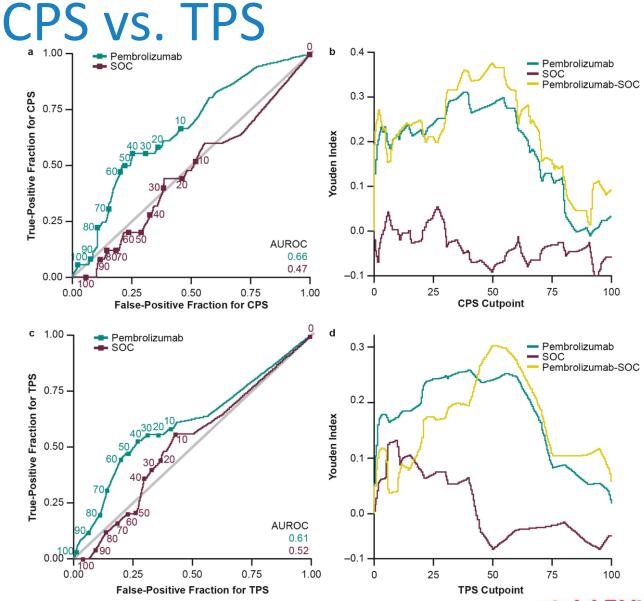
$$CPS = \frac{6 \text{ positive tumor cells+2 positive immune cells}}{22 \text{ total cells}} \times 100 = 36$$



CPS vs. TPS

a All patients. b Pembrolizumab-treated patients. c SOC-treated patients

Mod Pathol. 2021 Mar;34(3):532-



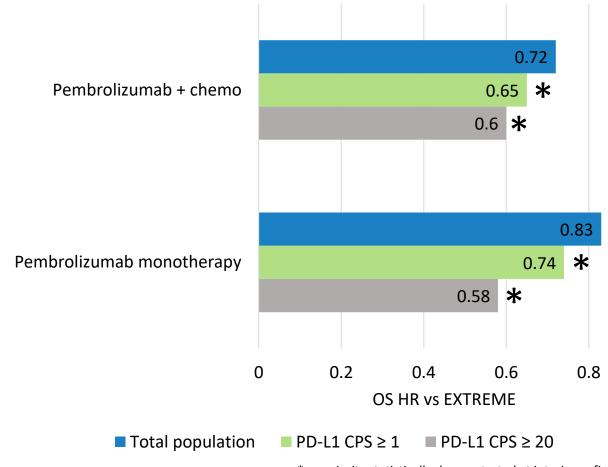
Impact of PD-L1 in HNSCC

PD-L1 CPS

- KEYNOTE-048
 - First-line treatment
 - Approval of pembrolizumab monotherapy: CPS > 1
- KEYNOTE-040
 - After platinum
 - Improved outcomes in PD-L1positive patients (by CPS ≥ 1), no significance in total population

PD-L1 TPS

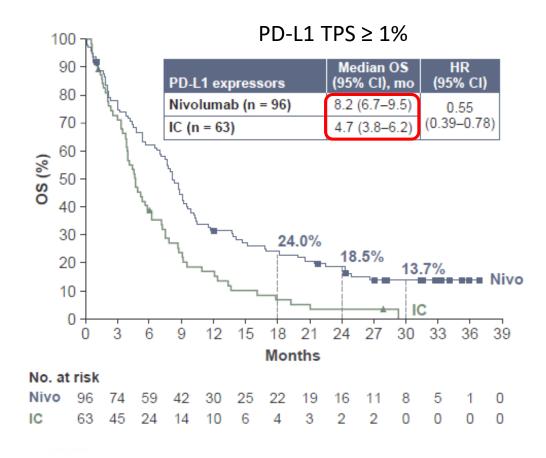
- CheckMate 141
 - After platinum
 - Greatest benefit seen for PD-L1positive tumors (TPS > 1%), but benefit regardless
- KEYNOTE-012
 - Second-line treatment
 - Higher response rate with PD-L1 CPS-positive tumors
 - No difference for PD-L1-positive tumors by TPS

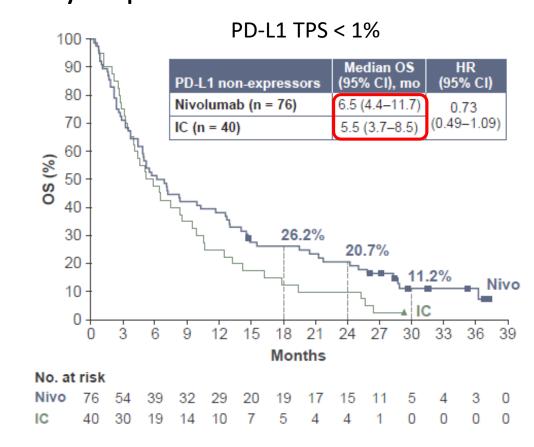


KEYNOTE-048: Outcomes by PD-L1 status

- Greatest benefits seen in tumors with highest PD-L1 expression
- Approval requires PD-L1 expression (CPS) only for monotherapy
- For total population, only pembrolizumab + chemotherapy should be considered, not monotherapy

*superiority statistically demonstrated at interim or final analysis



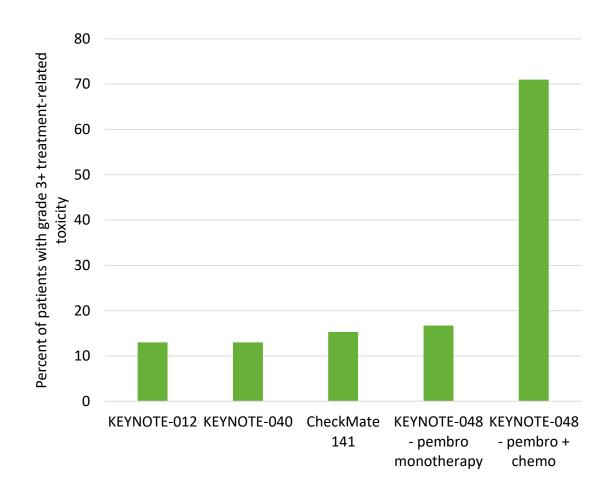


CheckMate 141: Outcomes by PD-L1 status

CheckMate 141: 2 year update

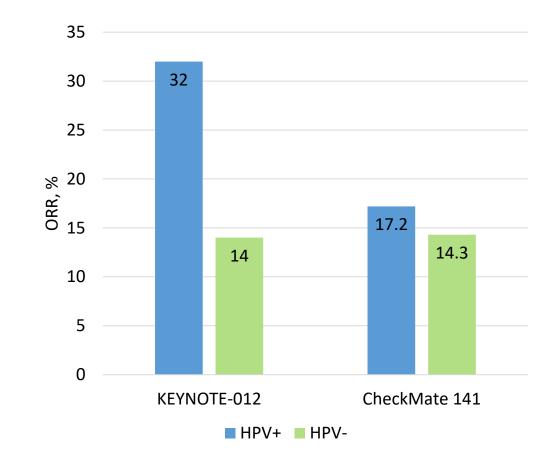
Outline

- Approved immunotherapies in head and neck cancers
- Biomarkers and immunotherapy responsiveness
- Unique considerations for head and neck cancers
- Future directions



Toxicities in head and neck cancer patients

- Patients typically receive aggressive radiation treatment, with accompanying side effects
- Radiation in combination with chemotherapy, immunotherapy and/or surgery can further complicate toxicity profiles
- While combinations may have higher response rates, also have higher toxicity rates



Viral infections in HNSCC

- Virally-associated cancers are biologically and clinically distinct
 - Human papillomavirus associated with oropharynx cancer
 - Epstein Barr virus associated with nasopharyngeal cancer
- Evidence that HPV+ tumors may perform better, but there is benefit with immunotherapy regardless of HPV status

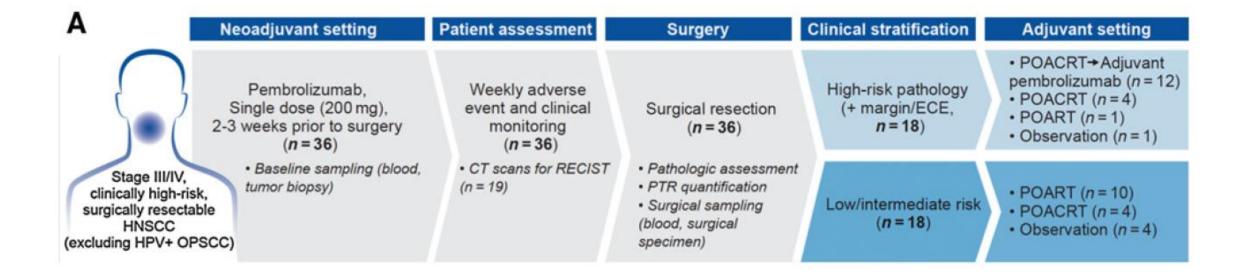
Combination immune checkpoint inhibition in HNSCC – *limited success to date*

1	Trial	Patient population	Treatment arms	ORR	Median OS (months)	Landmark OS
E	EAGLE R/M HNSCC after platinum	Durvalumab	17.9%	7.6	24-months: 18.4%	
		Durvalumab + tremelimumab	18.2%	6.5	24-months: 13.3%	
		SoC	17.3%	8.3	24-months: 10.3%	

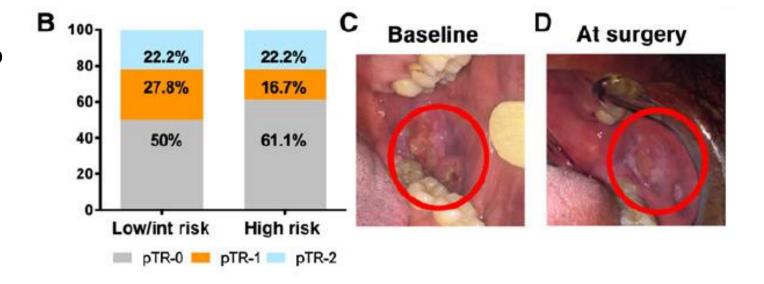
Trial	Patient population	Treatment arms	Expected study completion	
KESTREL	Untreated HNSCC	Durvalumab	February 2021	
		Durvalumab + tremelimumab		
		SoC		
CheckMate 714 Platinum-refractory HNSC		Nivolumab + ipilimumab	January 2024	
		Nivolumab		
CheckMate 651	Untreated HNSCC	Nivolumab + ipiliumumab	February 2026	
		EXTREME regimen		

Outline

- Approved immunotherapies in head and neck cancers
- Biomarkers and immunotherapy responsiveness
- Unique considerations for head and neck cancers
- Future directions



In development: Oral cavity cancer



In development: Oral cavity cancer

- No serious AEs or unexpected surgical complications/delays
- pTR-2: 22%
- pTR-1: 22%
- 1-year relapse rate: 16.7%

In development: Checkpoint inhibitors + radiotherapy as primary therapy

- KEYNOTE-412: pembrolizumab + chemoradiation
 - Phase III
 - Safety confirmed, estimated completion 2021

NEGATIVE

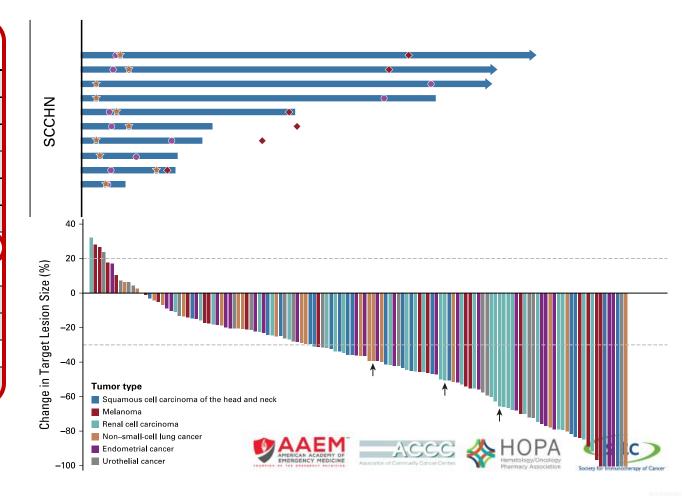
- REACH: avelumab + cetuximab + radiotherapy
 - Phase III
 - Safety confirmed, estimated completion 2027

In development: cetuximab + pembrolizumab for recurrent metastatic disease

- Cetuximab and pembrolizumab are both approved as monotherapies for HNSCC
- Phase II trial testing cetuximab + pembrolizumab:
 - Platinum refractory or ineligible disease
 - ORR: 45%
 - Median OS: 18.4 months
 - Safety profile consistent with individual drugs

In development: Selected ongoing combination trials

Trial	Patient population	Treatment arms	Targets	Expected study completion	
LEAP-010	Untreated recurrent/ metastatic PD-L1+ HNSCC (CPS ≥ 1)	Pembrolizumab + lenvatinib	PD-1 + multikinase inhibitor	April 2024	
		Pembrolizumab	PD-1		
INDUCE-3	Untreated recurrent/ metastatic PD-L1+ HNSCC (CPS <u>></u> 1)	Pembrolizumab + GSK609	PD-1 + ICOS	July 2023	
		Pembrolizumab	PD-1		
NCT02643550	HNSCC after 1-2 therapies, including progression on Pt	Monalizumab + cetuximab	NKG2A + EGFR	Phase 1/2: 2021 Phase 3: planned	

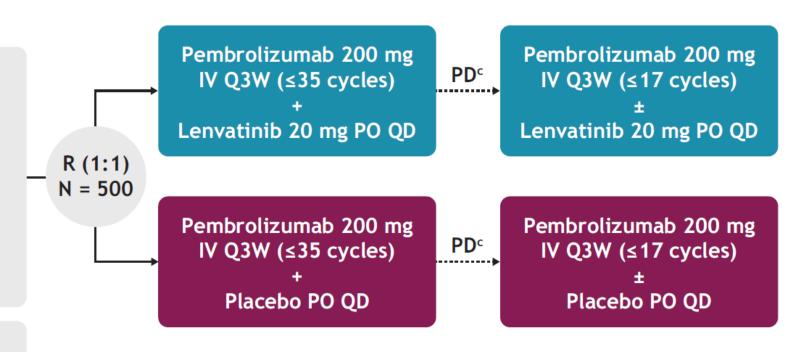

1154 Volume 38, Issue 11

Phase IB/II Trial of Lenvatinib Plus Pembrolizumab in Patients With Advanced Renal Cell Carcinoma, Endometrial Cancer, and Other Selected Advanced Solid Tumors

Matthew H. Taylor, MD¹; Chung-Han Lee, MD, PhD²; Vicky Makker, MD²; Drew Rasco, MD³; Corina E. Dutcus, MD⁴; Jane Wu, PhD⁴; Daniel E. Stepan, MD⁵; Robert C. Shumaker, PhD⁴; and Robert J. Motzer, MD²

TABLE 4. Efficacy Outcomes (investigator review, immune-related RECIST)

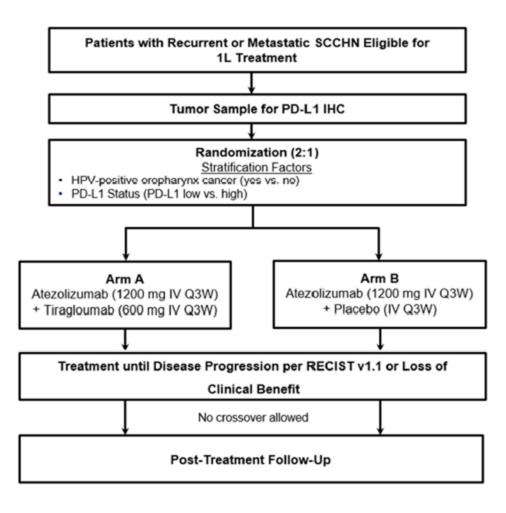
	RCC	Endometrial	SCCHN
Parameter	(n = 30)	(n = 23)	(n = 22)
Best overall response			
Complete response	0 (0)	2 (9)	1 (5)
Partial response	21 (70)	10 (44)	9 (41)
Stable disease	8 (27)	10 (44)	10 (46)
Progressive disease	1 (3)	1 (4)	0 (0)
Unknown	0 (0)	0 (0)	2 (9)
ORR ^a	21 (70)	12 (52)	10 (46)
(95% CI)	(50.6 to 85.3)	(30.6 to 73.2)	(24.4 to 67.8)
ORR _{Week24}	19 (63)	12 (52)	8 (36)
(95% CI)	(43.9 to 80.1)	(30.6 to 73.2)	(17.2 to 59.3)
Median DOR, months (95% CI)	20.0 (9.0 to 22.9)	NE (2.6 to NE)	8.2 (2.2 to 12.6)
Median PFS, months (95% CI)	19.8 (9.9 to 24.1)	9.7 (4.2 to NE)	4.7 (4.0 to 9.8)


- O10 (NCT04199104) Study Design

Key Eligibility Criteria

- Adults with histologically confirmed
 R/M HNSCC with no curative treatment
- Measurable disease by RECIST v1.1
- No progression within 6 months of completion of prior CCRT
- PD-L1 CPS ≥1a
- Known p16 status in the oropharynx^b
- ECOG PS 0 or 1

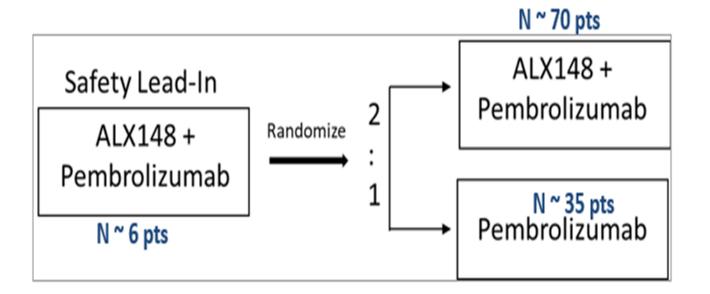
Stratification Factors

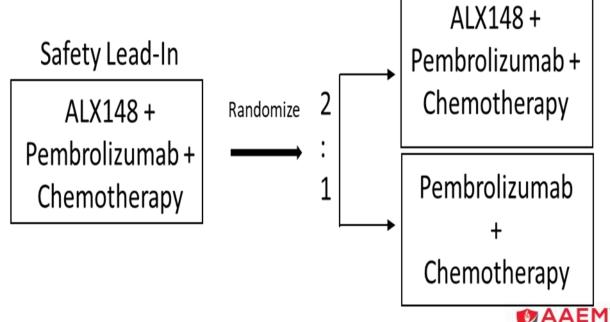

- PD-L1 expression (TPS <50% vs ≥50%^a)
- p16 status^b (positive vs negative)
- ECOG PS (0 vs 1)

CCRT, concomitant chemoradiotherapy; IV, intravenously; PD, progressive disease; PO, orally; QD, every day; Q3W, every 3 weeks; R, randomized; TPS, tumor proportion score.

aAssessed using the PD-L1 IHC 22C3 pharmDx assay (Agilent); bAssessed using the CINtec p16 histology assay; cutpoint for positivity 70%, HPV status for patients without propharynx cancer is considered HPV negative; cPatients who experience BICR-verified radiographic PD after stopping treatment while experiencing stable disease, partial response, or complete response may receive a second course based on investigator decision.

HPV= Human papillomavirus; IHC=immunohistochemistry; IV=intravenous; Q3W= every 3 weeks; PD-L1 low=TIC 5% –19%; PD-L1 high=TIC $\geq 20\%$; SCCHN=squamous cell carcinoma of head and neck; RECIST = Response Evaluation Criteria in Solid Tumors.





Conclusions

- Cytotoxic chemotherapy achieves limited survival in HNSCC with unfavorable side effects.
- Checkpoint inhibitors that target the PD-1 axis, nivolumab and pembrolizumab, are approved in platinum-refractory/exposed recurrent/metastatic HNSCC.
- Nivolumab and pembrolizumab are in general better tolerated than cytotoxic chemotherapy.
- Ongoing areas of research include combinations of immunotherapy with radiation and/or other drugs and development of predictive biomarkers.

Resources

Cohen et al. Journal for ImmunoTherapy of Cancer https://doi.org/10.1186/s40425-019-0662-5 (2019) 7:184

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

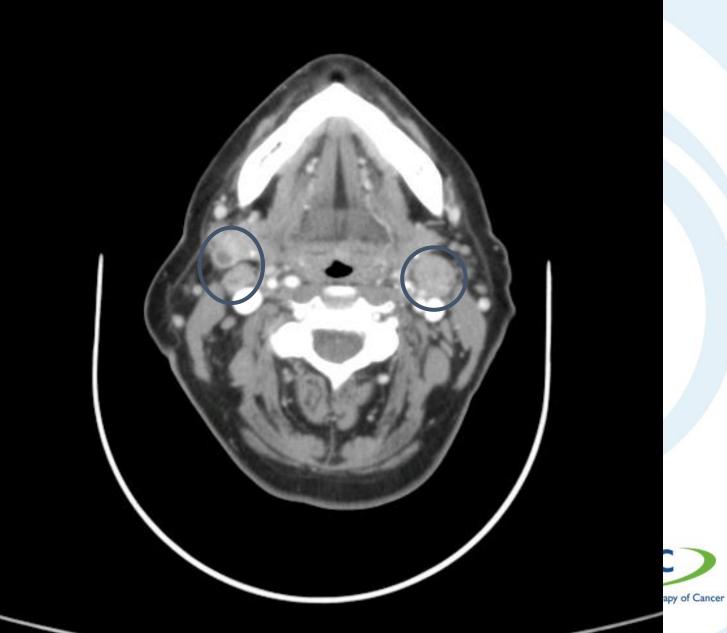
The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of squamous cell carcinoma of the head and neck (HNSCC)

Ezra E. W. Cohen¹, R. Bryan Bell², Carlo B. Bifulco², Barbara Burtness³, Maura L. Gillison⁴, Kevin J. Harrington⁵, Quynh-Thu Le⁶, Nancy Y. Lee⁷, Rom Leidner², Rebecca L. Lewis⁸, Lisa Licitra⁹, Hisham Mehanna¹⁰, Loren K. Mell¹, Adam Raben¹¹, Andrew G. Sikora¹², Ravindra Uppaluri¹³, Fernanda Whitworth¹⁴, Dan P. Zandberg⁸ and Robert L. Ferris^{8*}

Case Studies

Case Presentation #1

59-year-old female patient with active lifestyle presents with otalgia, difficulty swallowing, and right neck mass



IMMUNOTHERAPY™

Case #1 Medical History

Treated for primary tumor of the oropharynx, at base of tongue, T2N2c, 13 months prior

- Combination cisplatin with radiation
- Achieves a complete response after completing therapy

22 pack year history of smoking; quit 2 years prior Hypertension controlled with diuretic



Case #1 Imaging 12 months after completing CRT

ADVANCES IN

Case #1 Patient Function

- KPS: 80%
 - Lives with son's family, but maintains independence
 - Frequent golfer
- PDL1 CPS 5

Case Discussion #1

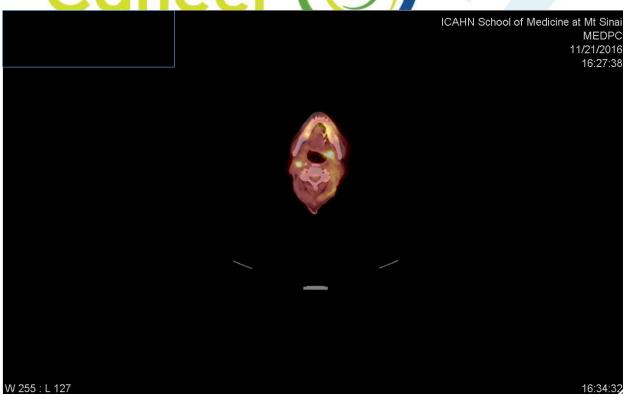
At this point, which treatment option would you pursue?

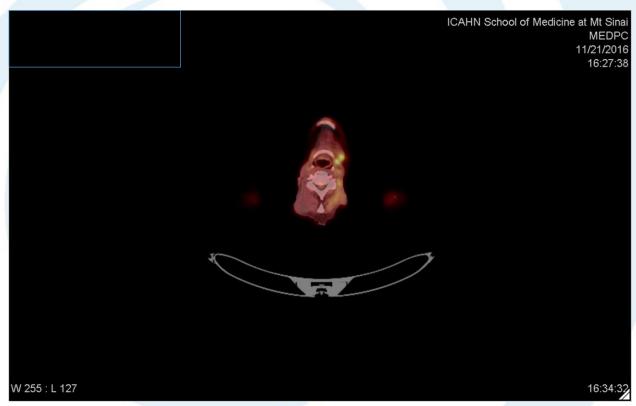
Possible Options

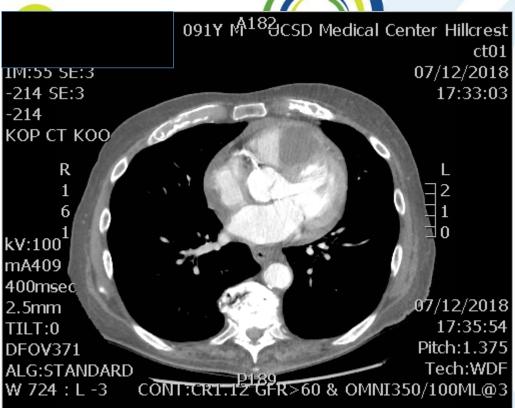
- Pembrolizumab alone
- Pembrolizumab plus chemotherapy
- EXTREME regimen
- TPEx regimen
- Cetuximab alone

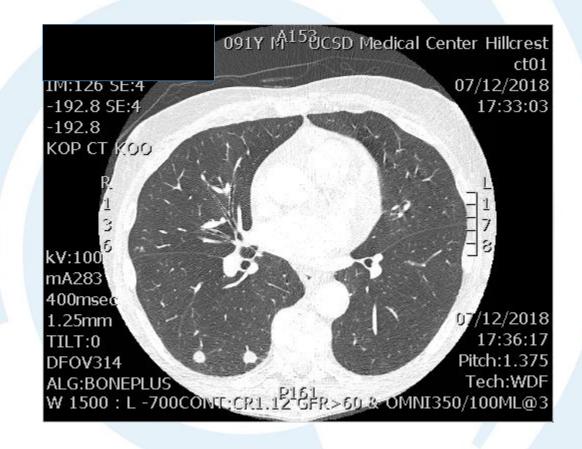
Case Discussion #2

- 52 y/o man who initially presented to our clinic in January 2017 with recurrent oral tongue SCC
- Oncology history:
 - January 2010 presented with T1, N2b, underwent surgery including neck dissection
 - 2/10/2010 4/7/2010 underwent adjuvant CDDP/RT
 - August 2016 Relapse Left tongue SCC
 - August 2016 hemiglossectomy, lymph node dissection
 - November 2016 new neck mass, FNA confirmed SCC
- Pain left head, neck, tongue; Mild dysphagia for liquids and some solids; Speech slurred
- CT chest demonstrates pulmonary nodules and intracardiac mass









ADVANCES IN

Possible Options

- Pembrolizumab alone
- Pembrolizumab plus chemotherapy
- EXTREME regimen
- TPEx regimen
- Cetuximab alone

Case Discussion

• PDL1 expression CPS 40 [secondary to gene amplification]

Treated with pembrolizumab/chemotherapy → CR lasting 1 year

