
Society for Immunotherapy of Cancer

Welcome to the
Advances in Cancer Immunotherapy™
Webinar Series – Updates from the Field:
Clinical Updates from ESMO Immuno-Oncology
Congress 2018

Thursday, February 14, 2019 5-6 p.m. CST Welcome to the Advances in Cancer Immunotherapy™ Webinar Series: Updates from the Field

Raise your hand if...

Webinar Agenda

5:00-5:05 p.m. CST

5:05-5:40 p.m. CST

5:40-5:55 p.m. CST

5:55-6:00 p.m. CST

Welcome and Introductions

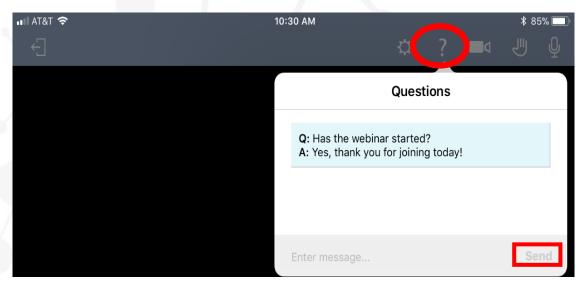
Clinical Updates from ESMO

IO Congress 2018

Question and Answer

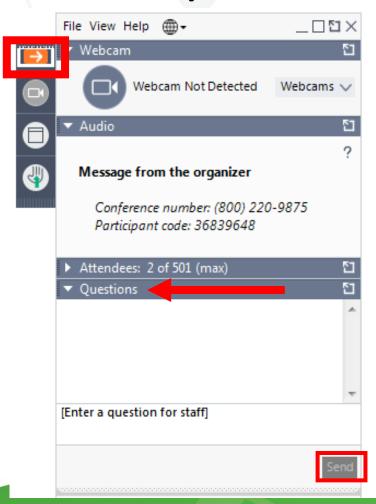
Session

Closing Remarks



Question and Answer

To submit a question:


Type your question in the Questions box of your webinar panel.

Mobile View

Desktop View



Disclaimer

Participants have an implied responsibility to use the newly acquired information to enhance patient outcomes and their own professional development. The information presented in this webinar is not meant to serve as a guideline for patient management. Any procedures, medications, or other courses of diagnosis or treatment discussed or suggested in this webinar should not be used by clinicians without evaluation of their patient's conditions and possible contraindications and/or dangers in use, review of any applicable manufacturer's product information, and comparison with recommendations of other authorities.

Webinar Faculty

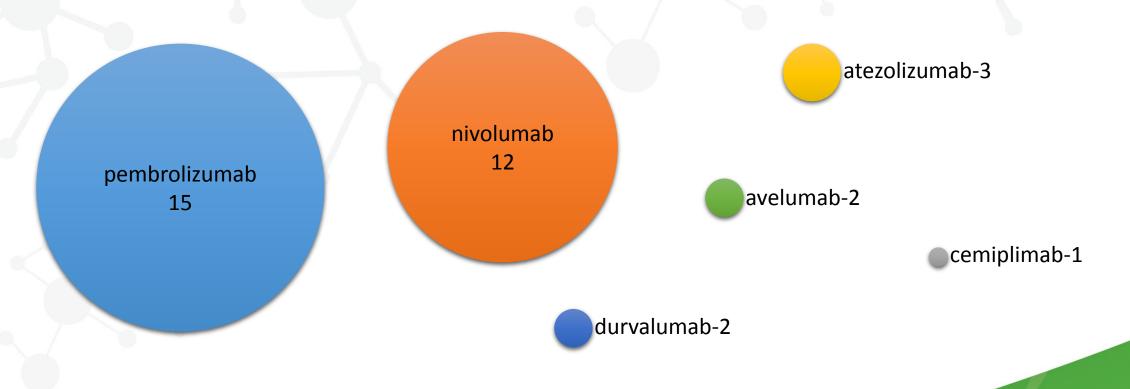
May Cho, MD

UC Davis Comprehensive

Cancer Center

Terence Rhodes, MD, PhD *Intermountain Healthcare*

Society for Immunotherapy of Cancer


Updates from the Field – 2018 ESMO IO Congress

Outline

- FDA approvals
 - Review IMpower150
- ESMO-Immuno-Oncology Congress 2018 clinical trials
 - Therapeutic Clinical trials
 - Checkmate 331
 - IMpower 133
 - MYSTIC
 - Subgroup analysis
 - MYSTIC
 - Abx and PPI in OAK and POPLAR
 - Fast progression in OAK

Number of FDA indications for checkpoint inhibitors

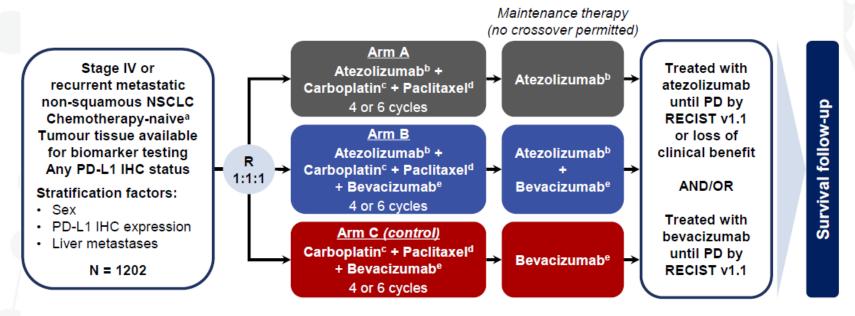
FDA approvals since Oct 2018

Pembolizumab

- Locally advanced or metastatic Merkel cell carcinoma
- First line treatment of metastatic squamous NSCLC in combination with carboplatin and either paclitaxel or nab-paclitaxel
- Post sorafenib hepatocellular carcinoma

Atezolizumab

 Non-squamous, NSCLC in combination with carboplatin, paclitaxel, bevacizumab



Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC

M.A. Socinski, R.M. Jotte, F. Cappuzzo, F. Orlandi, D. Stroyakovskiy, N. Nogami, D. Rodríguez-Abreu, D. Moro-Sibilot, C.A. Thomas, F. Barlesi, G. Finley, C. Kelsch, A. Lee, S. Coleman, Y. Deng, Y. Shen, M. Kowanetz, A. Lopez-Chavez, A. Sandler, and M. Reck, for the IMpower150 Study Group*

IMpower150 study design

The principal question is to assess whether the addition of atezolizumab to Arm C provides clinical benefit

Characteristic	ABCP Group (N = 400)	BCP Group (N = 400)
Median age (range) — yr	63 (31-89)	63 (31-90)
Age group — no. (%)		
<65 yr	215 (53.8)	226 (56.5)
65–74 yr	149 (37.2)	132 (33.0)
75–84 yr	33 (8.2)	39 (9.8)
≥85 yr	3 (0.8)	3 (0.8)
Male sex — no. (%)	240 (60.0)	239 (59.8)
Liver metastases absent at enrollment — no. (%)	347 (86.8)	343 (85.8)
Race or ethnic group — no. (%)†		
White	322 (80.5)	335 (83.8)
Asian	56 (14.0)	46 (11.5)
Black	3 (0.8)	12 (3.0)
American Indian or Alaska Native	3 (0.8)	1 (0.2)
Multiple	3 (0.8)	0
Unknown	13 (3.2)	6 (1.5)
ECOG performance-status score — no./total no. (%)‡		
0	159/397 (40.1)	179/397 (45.1)
1	238/397 (59.9)	218/397 (54.9)
History of tobacco use — no. (%)		
Never	82 (20.5)	77 (19.2)
Current	90 (22.5)	92 (23.0)
Previous	228 (57.0)	231 (57.8)
Nonsquamous histologic subtype — no. (%)		
Adenocarcinoma	378 (94.5)	377 (94.2)
Other§	19 (4.8)	17 (4.2)
Unknown or not assessed	3 (0.8)	6 (1.5)
EGFR mutation status — no. (%)¶		
Positive	35 (8.8)	45 (11.3)
Negative	352 (88.0)	345 (86.3)
EML4-ALK rearrangement status — no. (%)		
Positive	13 (3.2)	21 (5.2)
Negative	383 (95.8)	375 (93.8)
KRAS mutation status — no. (%)**		
Positive	47 (11.8)	38 (9.5)
Negative	59 (14.8)	77 (19.2)

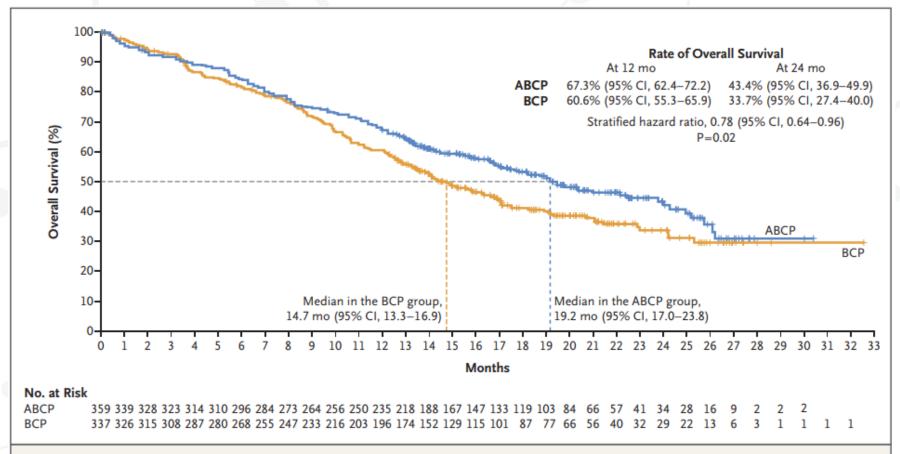


Figure 3. Interim Analysis of Overall Survival in the ABCP Group and the BCP Group.

Shown are Kaplan-Meier estimates of overall survival among the patients in the WT population. The date of data cutoff was January 22, 2018. At the earlier cutoff date of September 15, 2017, four patients were initially reported as having an EGFR mutation or an ALK translocation and were later confirmed to have WT genotype; this has been corrected in the analysis with the data cutoff at January 22, 2018.

B Hazard Ratios for Disease Progression or Death in Biomarker Subgroups

Population	No. of Patients (%)	Progres	edian ssion-free val (mo)		Hazard Ratio (95%	S CI)	
		ABCP	BCP				
ITT population	800 (100)	8.3	6.8		⊢		0.61 (0.52-0.72)
Patients with EGFR or ALK genetic alternations	108 (14)	9.7	6.1		•	→ ¦	0.59 (0.37–0.94)
WT population	692 (87)	8.3	6.8		├		0.62 (0.52-0.74)
PD-L1 subgroups (in the WT population	n)					i	
TC3 or IC3	135 (20)	12.6	6.8	-	•		0.39 (0.25-0.60)
TC1/2/3 or IC1/2/3	354 (51)	11.0	6.8		—	i	0.50 (0.39-0.64)
TC1/2 or IC1/2	224 (32)	8.3	6.6		—		0.56 (0.41-0.77)
TC0/1/2 and IC0/1/2	557 (80)	8.0	6.8		—	i	0.68 (0.56-0.82)
TC0 and IC0	338 (49)	7.1	6.9		·		0.77 (0.61-0.99)
Teff subgroups (in the WT population)						i	
High gene-signature expression	284 (43)	11.3	6.8		—		0.51 (0.38-0.68)
Low gene-signature expression	374 (57)	7.3	7.0		—	— ;	0.76 (0.60-0.96)
				0.25		1.00	1.25
					ABCP Better	BCF	Better

Event		ABCP Group (N=393)			BCP Group (N=394)	
	Grade 1-2	Grade 3-4	Grade 5	Grade 1–2	Grade 3-4	Grade 5
			number of pa	tients (percent)		
Treatment-related adverse events	141 (35.9)	219 (55.7)	11 (2.8)	179 (45.4)	188 (47.7)	9 (2.3)
Treatment-related adverse events with an incidence of ≥10%†						
Alopecia	183 (46.6)	0	0	173 (43.9)	0	0
Peripheral neuropathy	141 (35.9)	11 (2.8)	0	113 (28.7)	9 (2.3)	0
Nausea	119 (30.3)	15 (3.8)	0	101 (25.6)	8 (2.0)	0
Fatigue	88 (22.4)	13 (3.3)	0	79 (20.1)	10 (2.5)	0
Anemia	70 (17.8)	24 (6.1)	0	71 (18.0)	23 (5.8)	0
Decreased appetite	77 (19.6)	10 (2.5)	0	56 (14.2)	3 (0.8)	0
Diarrhea	70 (17.8)	11 (2.8)	0	58 (14.7)	2 (0.5)	0
Neutropenia	18 (4.6)	54 (13.7)	0	24 (6.1)	44 (11.2)	0
Hypertension	50 (12.7)	25 (6.4)	0	42 (10.7)	25 (6.3)	0
Arthralgia	63 (16.0)	3 (0.8)	0	55 (14.0)	4 (1.0)	0
Constipation	65 (16.5)	0	0	45 (11.4)	0	0
Asthenia	52 (13.2)	5 (1.3)	0	53 (13.5)	11 (2.8)	0
Epistaxis	50 (12.7)	4 (1.0)	0	68 (17.3)	0	0
Vomiting	50 (12.7)	6 (1.5)	0	51 (12.9)	5 (1.3)	0
Decreased platelet count	34 (8.7)	20 (5.1)	0	35 (8.9)	9 (2.3)	0
Myalgia	51 (13.0)	2 (0.5)	0	46 (11.7)	1 (0.3)	0
Thrombocytopenia	36 (9.2)	16 (4.1)	0	28 (7.1)	17 (4.3)	0
Proteinuria	41 (10.4)	10 (2.5)	0	37 (9.4)	11 (2.8)	0
Decreased neutrophil count	14 (3.6)	34 (8.7)	0	10 (2.5)	25 (6.3)	0
Rash	47 (12.0)	5 (1.3)	0	20 (5.1)	0	0
Stomatitis	43 (10.9)	4 (1.0)	0	20 (5.1)	1 (0.3)	0
Paresthesia	42 (10.7)	0	0	36 (9.1)	1 (0.3)	0
Febrile neutropenia	2 (0.5)	33 (8.4)	3 (0.8)	0	23 (5.8)	0

Table 3. Incidence of Treatment-Related	Adverse Events	.*				
Event		ABCP Group (N=393)			BCP Group (N=394)	
	Grade 1-2	Grade 3-4	Grade 5	Grade 1–2	Grade 3-4	Grade 5
			number of pa	tients (percent)		
Treatment-related adverse events	141 (35.9)	219 (55.7)	11 (2.8)	179 (45.4)	188 (47.7)	9 (2.3)
Treatment-related adverse events with an incidence of ≥10%†						
Alopecia	183 (46.6)	0	0	173 (43.9)	0	0
Peripheral neuropathy	141 (35.9)	11 (2.8)	0	113 (28.7)	9 (2.3)	0
Nausea	119 (30.3)	15 (3.8)	0	101 (25.6)	8 (2.0)	0
Fatigue	88 (22.4)	13 (3.3)	0	79 (20.1)	10 (2.5)	0
Anemia	70 (17.8)	24 (6.1)	0	71 (18.0)	23 (5.8)	0
Decreased appetite	77 (19.6)	10 (2.5)	0	56 (14.2)	3 (0.8)	0
Diarrhea	70 (17.8)	11 (2.8)	0	58 (14.7)	2 (0.5)	0
Neutropenia	18 (4.6)	54 (13.7)	0	24 (6.1)	44 (11.2)	0
Hypertension	50 (12.7)	25 (6.4)	0	42 (10.7)	25 (6.3)	0
Arthralgia	63 (16.0)	3 (0.8)	0	55 (14.0)	4 (1.0)	0
Constipation	65 (16.5)	0	0	45 (11.4)	0	0
Asthenia	52 (13.2)	5 (1.3)	0	53 (13.5)	11 (2.8)	0
Epistaxis	50 (12.7)	4 (1.0)	0	68 (17.3)	0	0
Vomiting	50 (12.7)	6 (1.5)	0	51 (12.9)	5 (1.3)	0
Decreased platelet count	34 (8.7)	20 (5.1)	0	35 (8.9)	9 (2.3)	0
Myalgia	51 (13.0)	2 (0.5)	0	46 (11.7)	1 (0.3)	0
Thrombocytopenia	36 (9.2)	16 (4.1)	0	28 (7.1)	17 (4.3)	0
Proteinuria	41 (10.4)	10 (2.5)	0	37 (9.4)	11 (2.8)	0
Decreased neutrophil count	14 (3.6)	34 (8.7)	0	10 (2.5)	25 (6.3)	0
Rash	47 (12.0)	5 (1.3)	0	20 (5.1)	0	0
Stomatitis	43 (10.9)	4 (1.0)	0	20 (5.1)	1 (0.3)	0
Paresthesia	42 (10.7)	0	0	36 (9.1)	1 (0.3)	0
Febrile neutropenia	2 (0.5)	33 (8.4)	3 (0.8)	0	23 (5.8)	0

Table S7: Immune-Related Adverse Events.*

No. of Patients (%)	ABCP (N=393)	BCP (N=394)
Rash		
All grades	113 (28.8)	52 (13.2)
Grade 3–4	9 (2.3)	2 (0.5)
Hepatitis (laboratory abnormalities)	(2.0)	_ (***)
All grades	47 (12.0)	29 (7.4)
Grade 3–4	16 (4.1)	3 (0.8)
Hypothyroidism	10 (4.1)	0 (0.0)
	50 (40 7)	45 (2.0)
All grades Grade 3–4	50 (12.7)	15 (3.8)
	1 (0.3)	0
Hyperthyroidism		
All grades	16 (4.1)	5 (1.3)
Grade 3–4	1 (0.3)	0
Pneumonitis		
All grades	11 (2.8)	5 (1.3)
Grade 3-4	6 (1.5)	2 (0.5)
Colitis	1 1	. ,
All grades	9 (2.3)	2 (0.5)
Grade 3–4	5 (1.3)	2 (0.5)
Hepatitis (diagnosis)	0 (1.0)	2 (0.0)
All grades	8 (2.0)	0
Grade 3–4		0
	4 (1.0)	0
Severe cutaneous reaction		
All grades	4 (1.0)	1 (0.3)
Adrenal insufficiency		
All grades	2 (0.5)	3 (0.8)
Grade 3–4	1 (0.3)	1 (0.3)
Pancreatitis	` ′	` ′
All grades	5 (1.3)	0
Grade 3–4	2 (0.5)	0
Hypophysitis	= (0.0)	•
All grades	3 (0.8)	0
Grade 3–4	1 (0.3)	0
	1 (0.3)	U
Nephritis	0 (0 0)	•
All grades	3 (0.8)	0
Grade 3–4	1 (0.3)	0
Ocular inflammatory toxicity		
All grades	3 (0.8)	0
Grade 3–4	1 (0.3)	0
Myositis		
All grades	2 (0.5)	1 (0.3)
Grade 3–4	1 (0.3)	O
Autoimmune hemolytic anemia	` ′	
All grades	1 (0.3)	1 (0.3)
	. (0.0)	. (0.0)
Vasculitis	4 (0.0)	4 (0.0)
All grades	1 (0.3)	1 (0.3)

M.A. Socinski, R.M. Jotte, F. Cappuzzo, F. Orlandi, D. Stroyakovskiy, N. Nogami, D. Rodríguez-Abreu, D. Moro-Sibilot, C.A. Thomas, F. Barlesi, G. Finley, C. Kelsch, A. Lee, S. Coleman, Y. Deng, Y. Shen, M. Kowanetz, A. Lopez-Chavez,
A. Sandler, and M. Reck, for the IMpower150 Study Group*

DOI: 10.1056/NFIMaa1716948

Immunotherapy options in first line metastatic NSCLC

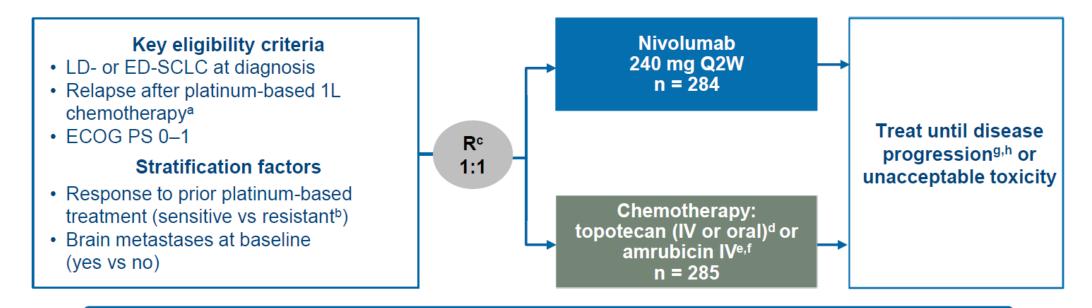
Nonsquamous

- Pembrolizumab as monotherapy (PD-L1 >50%)
- Pembrolizumab, carboplatin, pemetrexed (PD-L1 independent)
- Atezolizumab, bevacizumab, carboplatin, paclitaxel (PD-L1 independent)

Squamous

- Pembrolizumab as monotherapy (PD-L1 >50%)
- Pembrolizumab, carboplatin, paclitaxel or nab-paclitaxel (PD-L1 independent)

Clinical trials presented at ESMO-Immuno-Oncology Congress 2018



Randomized Phase 3 Study of Nivolumab Monotherapy Versus Chemotherapy in Relapsed Small Cell Lung Cancer: Results From CheckMate 331

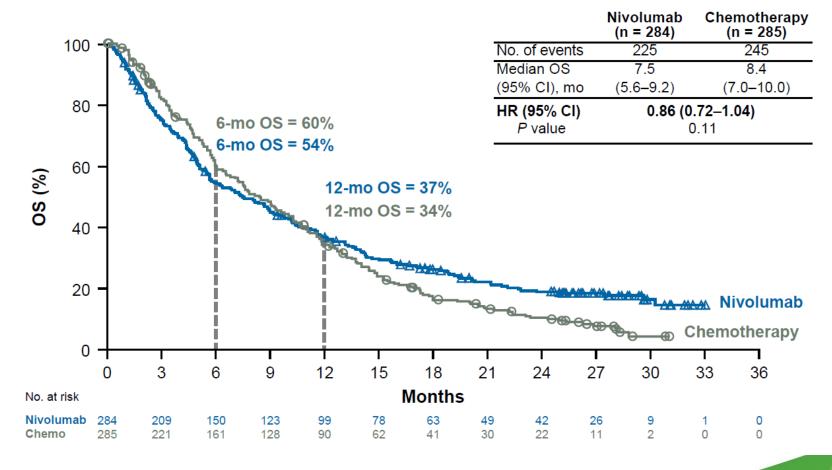
Martin Reck,¹ David Vicente,² Tudor Ciuleanu,³ Scott Gettinger,⁴ Solange Peters,⁵ Leora Horn,⁶ Clarisse Audigier-Valette,⁷ Nuria Pardo,⁸ Oscar Juan-Vidal,⁹ Ying Cheng,¹⁰ Helong Zhang,¹¹ Meiqi Shi,¹² Juergen Wolf,¹³ Scott Antonia,¹⁴ Kazuhiko Nakagawa,¹⁵ Giovanni Selvaggi,¹⁶ Christine Baudelet,¹⁶ Han Chang,¹⁶ David R. Spigel¹⁷

CheckMate 331 Study Design

Primary endpoint: OS

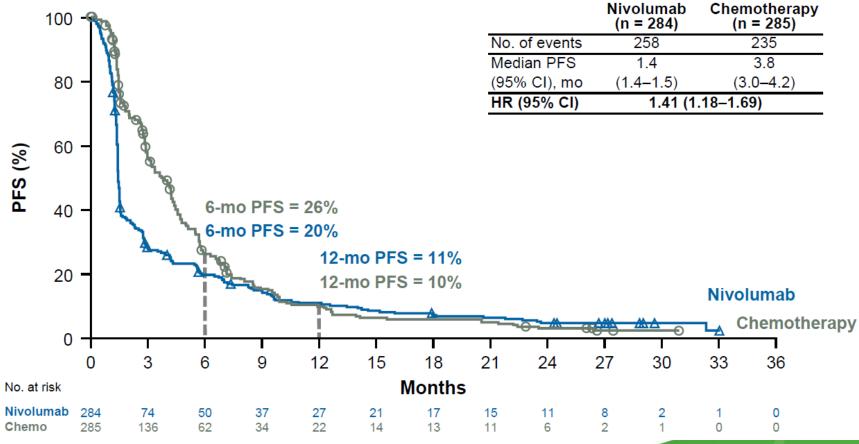
Secondary endpoints: PFSg and ORRg (investigator assessed)

- Database lock: 28 September 2018; minimum follow-up for OS: 15.8 months
- Median follow-upⁱ: 7.0 months (nivolumab), 7.6 months (chemotherapy)

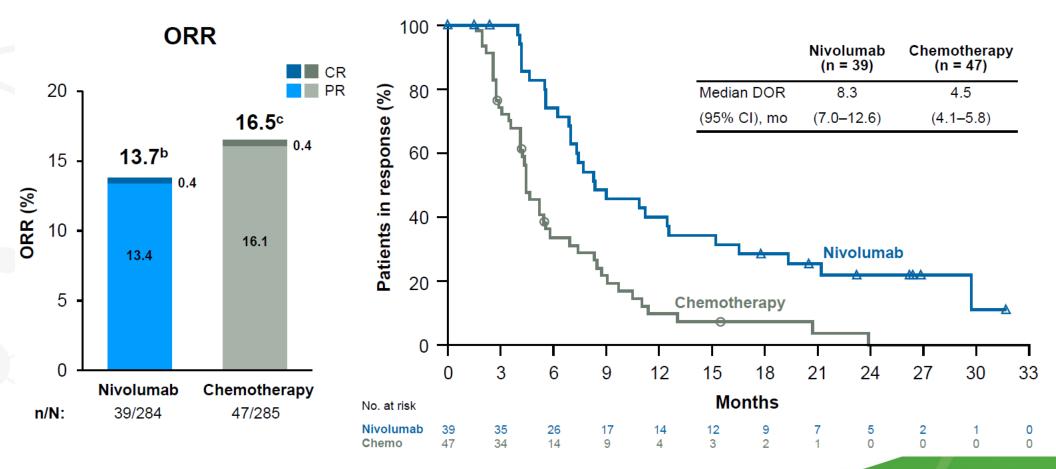


Baseline Characteristics

	Nivolumab (n = 284)	Chemotherapy ^a (n = 285)
Age, median (range), y	62 (37–85)	61 (34–82)
Female, n (%)	110 (39)	108 (38)
Race, n (%) ^b White Asian	211 (74) 70 (25)	211 (74) 71 (25)
Disease classification, n (%)° Limited disease Extensive disease	74 (26) 210 (74)	94 (33) 191 (67)
ECOG PS, n (%) ^d 0 1	75 (26) 209 (74)	81 (28) 203 (71)
Smoking status, n (%) ^e Current or former Never smoker	256 (90) 26 (9)	260 (91) 24 (8)
Response to 1L therapy, n (%) Platinum sensitive ^f Platinum resistant ^g	163 (57) 121 (43)	160 (56) 125 (44)
CNS metastases, n (%) No Yes	234 (82) 50 (18)	239 (84) 46 (16)
Liver metastases, n (%) No or NR ^h Yes	187 (66) 97 (34)	177 (62) 108 (38)

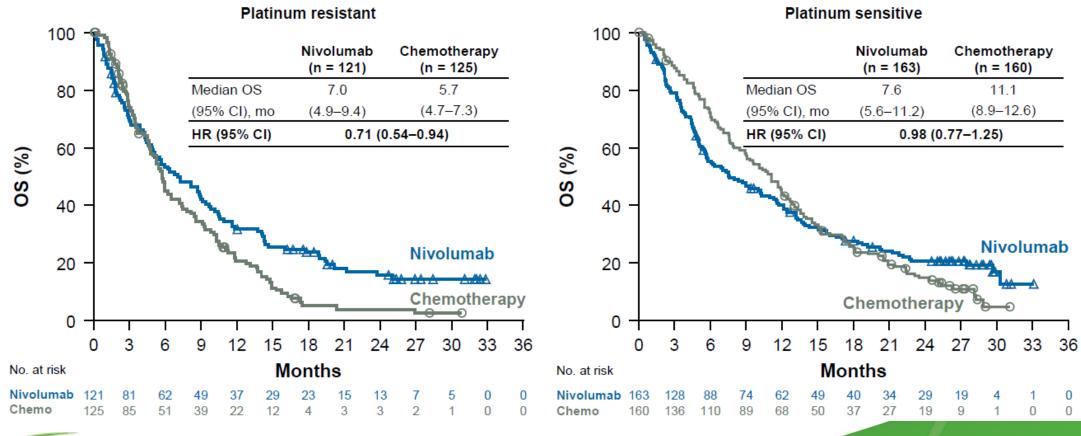


Primary Endpoint: OS With Nivolumab vs Chemotherapy



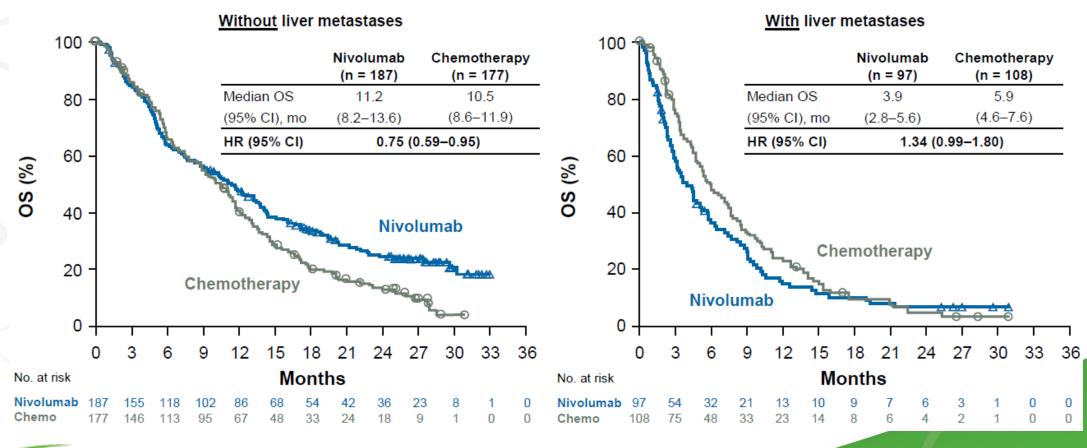
PFS With Nivolumab vs Chemotherapy^a

ORR and DOR With Nivolumab vs Chemotherapy^a



OS Subgroup Analysis

	Media	n OS, mo	Unstratified HR (95% CI)	Unstratified	
Subgroup	Nivolumab	Chemotherapy	Offstratified HK (95% CI)	HR	
Overall (n = 569)	7.5	8.4		0.87	
<65 years (n = 361)	8.0	7.8		0.88	
⊵65 years (n = 208)	7.3	8.9		0.87	
Male (n = 351)	7.3	7.6		0.80	
emale (n = 218)	8.6	9.0	 •	1.03	
White (n = 422)	6.0	8.4		0.91	
Asian (n = 141)	11.5	10.0		0.79	
imited disease ^a (n = 168)	10.2	9.6		0.88	
Extensive diseasea (n = 401)	6.3	7.5		0.85	
ECOG PS 0 ^b (n = 156)	10.2	10.9		0.84	
ECOG PS ≥1 ^b (n = 413)	5.8	7.5		0.87	
.DH ≤ ULN ^b (n = 293)	13.6	11.6		0.70	
.DH > ULN ^b (n = 246)	4.4	4.7		0.95	
PT sensitive (n = 323)	7.6	11.1		0.98	
PT resistant (n = 246)	7.0	5.7		0.71	
No CNS metastases ^b (n = 473)	7.3	8.9		0.88	
CNS metastases ^b (n = 96)	8.1	6.0		0.81	
No liver metastases or NRb,c (n = 364)	11.2	10.5		0.75	
iver metastases ^b (n = 205)	3.9	5.9	<u> </u>	- 1.34	



OS by Response to Prior Platinum Therapy^a

OS in Patients Without and With Baseline Liver Metastases

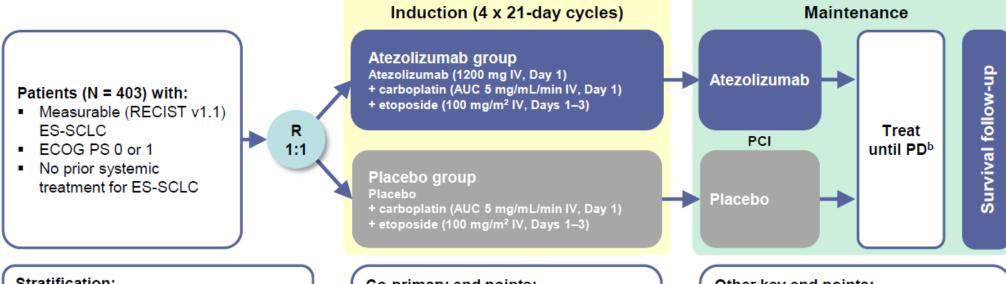
Safety Summary of Treatment-Related AEs

	Nivolumab (n = 282)		Chemotherapy (n = 265)	
TRAE, ^a n (%)	Any grade	Grade 3-4	Any grade	Grade 3-4
Any TRAE	156 (55)	39 (14)	239 (90)	194 (73)
Serious TRAEs	37 (13)	22 (8)	87 (33)	81 (31)
TRAE leading to discontinuation	17 (6)	12 (4)	38 (14)	25 (9)
Most frequent TRAEs (≥15%b)				
Asthenia	25 (9)	2 (1)	42 (16)	17 (6)
Fatigue	25 (9)	0	54 (20)	13 (5)
Decreased appetite	21 (7)	1 (0.4)	40 (15)	5 (2)
Anemia	13 (5)	0	147 (56)	68 (26)
Nausea	14 (5)	0	47 (18)	2 (1)
Platelet count decreased	5 (2)	1 (0.4)	63 (24)	34 (13)
Thrombocytopenia	5 (2)	0	80 (30)	56 (21)
White blood cell count decreased	4 (1)	1 (0.4)	45 (17)	30 (11)
Leukopenia	4 (1)	0	43 (16)	31 (12)
Neutropenia Neutropenia	4 (1)	1 (0.4)	91 (34)	73 (28)
Neutrophil count decreased	0	0	58 (22)	45 (17)
Treatment-related deaths ^c	2	(1)	3	(1)

Summary of Treatment-Related Select AEs

	Nivolumab (n = 282)		Chemotherapy (n = 265)	
Select TRAE,ª n (%)	Any grade	Grade 3–4	Any grade	Grade 3–4
Endocrine	33 (12)	2 (1)	0	0
Skin	32 (11)	1 (0.4)	3 (1)	1 (0.4)
Gastrointestinal	20 (7)	3 (1)	24 (9)	4 (2)
Hepatic	13 (5)	7 (2)	15 (6)	1 (0.4)
Pulmonary	13 (5)	4 (1)	1 (0.4)	0
Hypersensitivity/infusion reaction	12 (4)	0	16 (6)	2 (1)
Renal	6 (2)	1 (0.4)	5 (2)	0

IMpower133: Patient-reported outcomes (PROs) in a Ph1/3 study of first-line (1L) atezolizumab + carboplatin + etoposide (CP/ET) in extensive-stage SCLC (ES-SCLC)


Raffaele Califano,¹ Andrzej Każarnowicz,² Nina Karaseva,³ Amparo Sánchez,⁴ Stephen V Liu,⁵ Leora Horn,⁶ Caroleen Quach⁷, Wei Yu,⁷ Fairooz Kabbinavar,⁷ Sivuonthanh Lam,⁷ <u>Aaron Mansfield</u>⁸

IMpower133 (NCT02763579)

Global Phase 1/3, double-blind, randomised, placebo-controlled trial that evaluated atezolizumab + CP/ET in 1L ES-SCLC

Stratification:

- Sex (male vs. female)
- ECOG PS (0 vs. 1)
- Brain metastases (yes vs. no)a

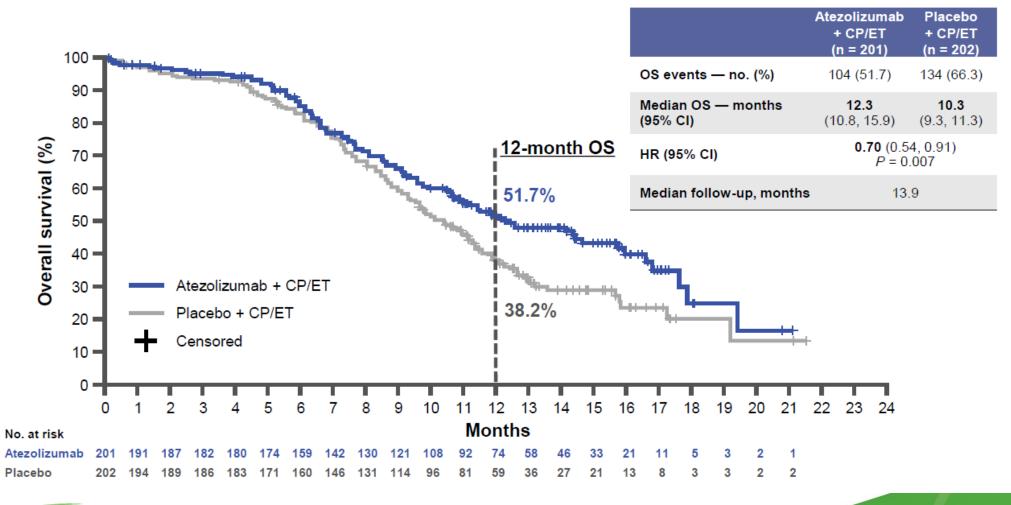
Co-primary end points:

- Overall survival
- Investigator-assessed progression-free survival

Other key end points:

- Objective response rate
- Duration of response
- Safety
- Patient-reported outcomes

Baseline characteristics


Characteristic	Atezolizumab + CP/ET (n = 201)	Placebo + CP/ET (n = 202)
Median age — years (range)	64 (28–90)	64 (26–87)
Age group — no. (%)		
< 65 years	111 (55.2)	106 (52.5)
≥ 65 years	90 (44.8)	96 (47.5)
Male sex — no. (%) ^a	129 (64.2)	132 (65.3)
ECOG performance status — no. (%) ^a		
0	73 (36.3)	67 (33.2)
1	128 (63.7)	135 (66.8)
Smoking status — no. (%)		
Never smoked	9 (4.5)	3 (1.5)
Current smoker	74 (36.8)	75 (37.1)
Former smoker	118 (58.7)	124 (61.4)
Brain metastases at enrolment — no. (%) ^a	17 (8.5)	18 (8.9)
Median sum of longest diameter of target lesions at baseline (range)	113.0 (12.0–325.0)	105.5 (15.0–353.0)
Previous anti-cancer treatments — no. (%)		
Chemotherapy or non-anthracycline	8 (4.0)	12 (5.9)
Radiotherapy	25 (12.4)	28 (13.9)
Cancer-related surgery	33 (16.4)	25 (12.4)

Clinical data cut-off date: 24 April, 2018. ^a The data were determined from electronic case-report forms. Horn L, et al. *N Engl J Med*, 2018.

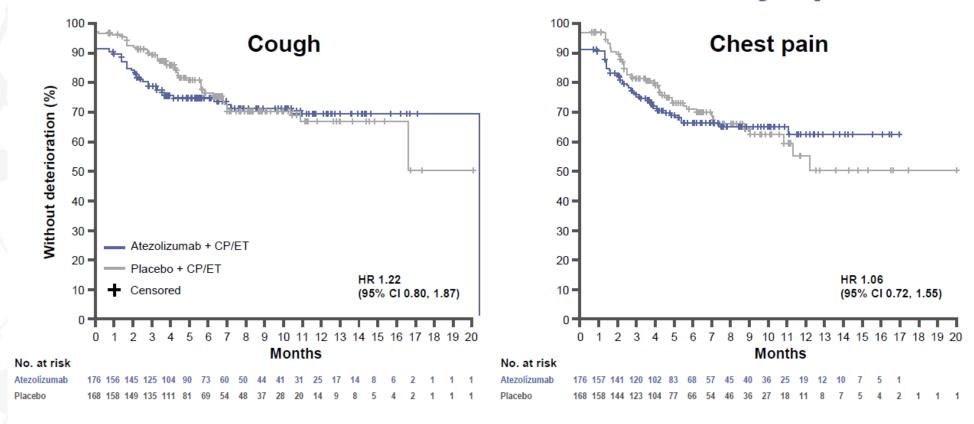
Overall survival

Safety and exposure summary

	Atezolizumab + CP/ET (n = 198)ª	Placebo + CP/ET (n = 196)ª
Patients with ≥ 1 AE — no. of patients (%)	198 (100)	189 (96.4)
Grade 3–4 AEs	133 (67.2)	125 (63.8)
Grade 5 AEs	4 (2.0)	11 (5.6)
Treatment-related AEs ^b — no. of patients (%)	188 (94.9)	181 (92.3)
Treatment-related Grade 3–4 AEs	112 (56.6)	110 (56.1)
Treatment-related Grade 5 AEs	3 (1.5)	3 (1.5)
Serious AEs — no. of patients (%)	74 (37.4)	68 (34.7)
Treatment-related serious AEsb	45 (22.7)	37 (18.9)
AEs leading to withdrawal from any treatment — no. of patients (%)	22 (11.1)	6 (3.1)
Median duration of atezolizumab treatment — months (range)	4.7 (0–21)	_
Median atezolizumab doses — no. (range)	7 (1–30)	-
Median duration of carboplatin — months (range)	2.3 (0-4)	2.2 (0-4)
Median duration of etoposide — months (range)	2.3 (0-4)	2.2 (0-4)

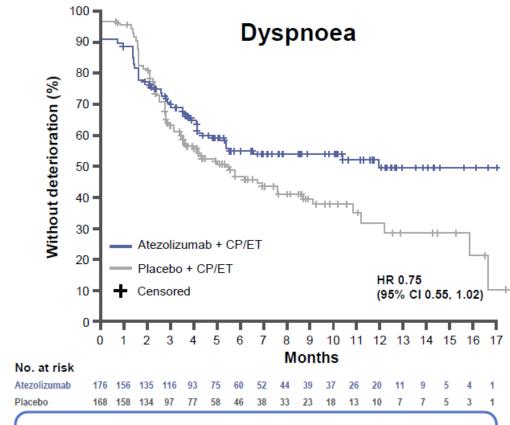
Patient-reported outcome assessments

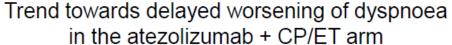
Lung cancer-related symptoms or concerns	Treatment-related symptoms	Function	HRQoL
 Dyspnoea Cough Haemoptysis Pain in chest Pain Financial impact Pain in arm Fatigue or shoulder Appetite loss 	 Alopecia Sore mouth Dysphagia Peripheral neuropathy Nausea and vomiting Insomnia Constipation Diarrhoea 	PhysicalRoleEmotionalCognitiveSocial	 Global health status

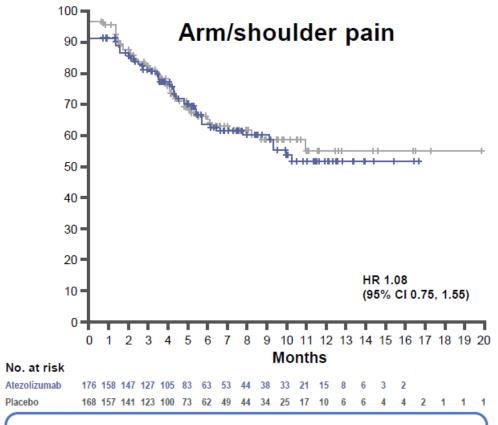

- Each EORTC QLQ-30¹ or QLC-LC13² scale score range is 0–100
- Higher scores indicate a higher response level: Either worse symptoms, better function, or better HRQoL

Induction phase (4 x 21-day cycles)	Maintenance phase	Survival follow-up
Scheduled study treatm	ent visits every 21 days	At 3 months and 6 months after disease progression per
until treatment	discontinuation	RECIST v1.1 or after treatment discontinuation

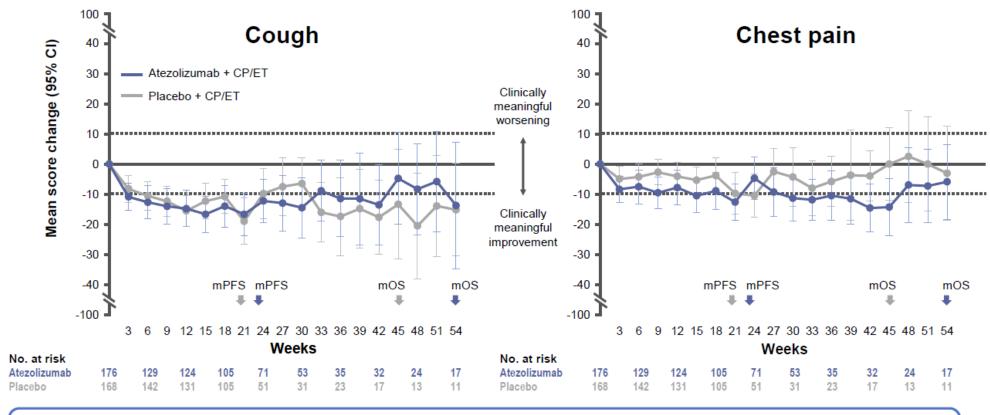
Time to deterioration of disease-related symptoms **EMD**



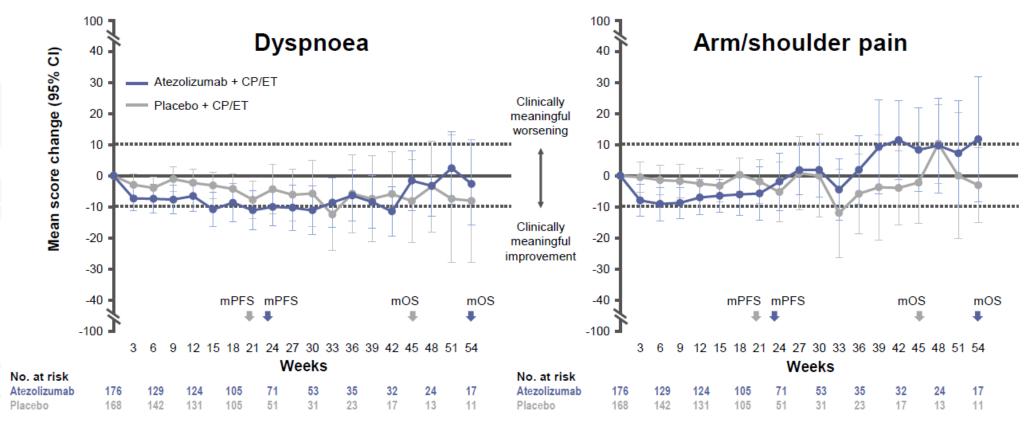

Times to deterioration in cough and chest pain were similar between arms



Time to deterioration of disease-related symptoms



Time to deterioration of arm/shoulder pain was similar between arms


Change from baseline in disease-related symptoms EMD

Patients in both arms reported notable improvement of symptoms, with earlier and more pronounced improvements in chest pain reported by patients receiving atezolizumab + CP/ET

Change from baseline in disease-related symptoms EMD

Trend towards earlier and greater improvement in symptoms during the first 6 months for patients in the atezolizumab + CP/ET arm

Checkmate 331 and Impower 133 summary

Checkmate 331

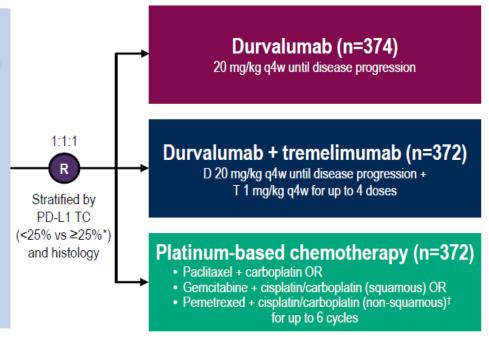
- Nivolumab did not meet primary endpoint of improved OS over chemotherapy in the second line setting.
- Responses to nivolumab were more durable of chemotherapy
- Nivolumab appears more effective platinum resistant tumors and patient without liver metastasis

IMpower 133

- Atezolizumab combination chemotherapy increased 12 month OS from 51.7% over standard chemotherapy alone at 38.2%
- PRO allowed a greater understanding of therapy's effect on patients disease course.

DURVALUMAB WITH OR WITHOUT TREMELIMUMAB VS PLATINUM-BASED CHEMOTHERAPY AS FIRST-LINE TREATMENT FOR METASTATIC NON-SMALL CELL LUNG CANCER: MYSTIC

Naiyer Rizvi,¹ Byoung Chul Cho,² Niels Reinmuth,³ Ki Hyeong Lee,⁴ Myung-Ju Ahn,⁵ Alexander Luft,⁶ Michael van den Heuvel,⁷ Manuel Cobo,⁸ Alexey Smolin,⁹ David Vicente,¹⁰ Vladimir Moiseyenko,¹¹ Scott Antonia,¹² Sylvestre Le Moulec,¹³ Gilles Robinet,¹⁴ Ronald Natale,¹⁵ Kazuhiko Nakagawa,¹⁶ Luping Zhao,¹⁷ Koustubh Ranade,¹⁸ Paul Stockman,¹⁹ Vikram Chand,¹⁷ Solange Peters²⁰



MYSTIC STUDY DESIGN

Phase 3, global, randomised, open-label, multicentre study

- Stage IV NSCLC
- All-comers population (i.e. irrespective of PD-L1 status)
- No sensitising EGFR mutation or ALK rearrangement
- ECOG PS 0/1
- Immunotherapy- and CT-naïve

N=1118 randomised

Primary endpoints (PD-L1 TC ≥25%*):

- PFS[‡] (D+T vs CT)
- OS (D vs CT)
- OS (D+T vs CT)

Key secondary endpoints:

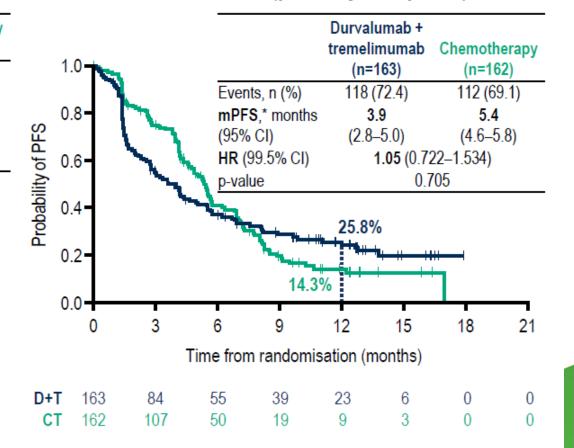
- PFS[‡] (D vs CT; PD-L1 TC ≥25%*)
- OS (D+T vs CT; PD-L1 TC ≥1%*)
- ORR‡
- DoR
- Safety and tolerability

Key exploratory endpoints:

- OS by additional PD-L1 TC cutoffs
- OS by blood TMB

BASELINE CHARACTERISTICS

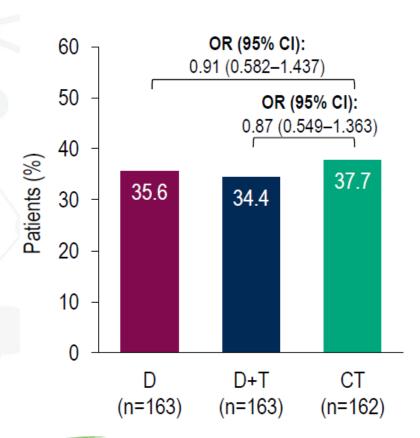
	Durvalumab	Durvalumab + tremelimumab	Chemotherapy
PD-L1 TC ≥25% population*	n=163	n=163	n=162
Median age (range), years	64.0 (32–84)	65.0 (34–87)	64.5 (35–85)
Male, %	69.3	72.4	65.4
White / Asian / Other, %	62.0 / 36.2 / 1.8	68.1 / 30.7 / 1.2	69.8 / 29.0 / 1.2
ECOG PS 0 / 1, %	35.0 / 64.4	39.9 / 60.1	43.2 / 56.2
Current / former / never smoker, %	28.8 / 56.4 / 14.7	25.8 / 58.9 / 15.3	24.1 / 63.0 / 13.0
Squamous, %	31.9	32.5	32.1
TT population	n=374	n=372	n=372
PD-L1 TC ≥1% / ≥25% / ≥50%, %	74.6 / 43.6 / 31.6	79.6 / 43.8 / 29.0	77.7 / 43.5 / 28.8



PROGRESSION-FREE SURVIVAL (PD-L1 TC ≥25%)

D vs CT (secondary endpoint)

Durvalumab Chemotherapy (n=163)(n=162)106 (65.0) 112 (69.1) Events, n (%) mPFS,* months 4.7 5.4 (3.1-6.3)(4.6-5.8)(95% CI) Probability of PFS HR (99.5% CI) 0.87 (0.593–1.285) 0.324 p-value 32.3% 0.2 14.3% 0.0 15 18 21 Time from randomisation (months) No. at risk 163 162 107 50 19 0

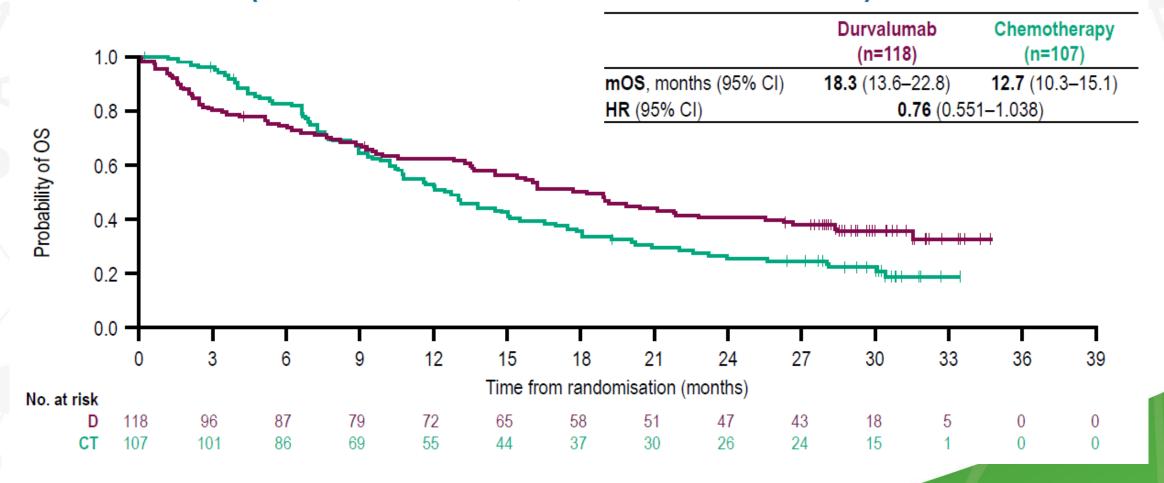

D+T vs CT (primary endpoint)

ANTITUMOUR ACTIVITY (PD-L1 TC ≥25%; SECONDARY ENDPOINT)

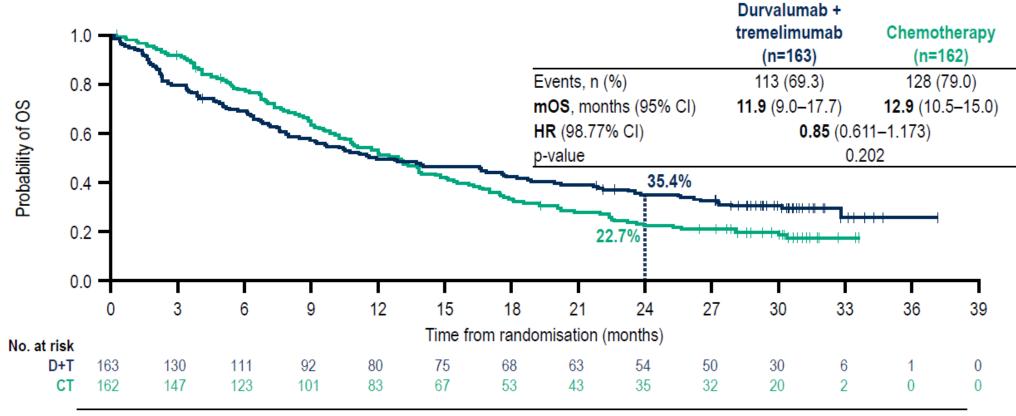
Objective response rate*

	Durvalumab (n=163)	Durvalumab + tremelimumab (n=163)	Chemotherapy (n=162)
Best objective response, %			
CR / PR	0.6 / 35.0	0 / 34.4	0 / 37.7
SD ≥6 weeks	30.7	27.6	40.7
Median DoR, months	Not reached	Not reached	4.4
Remaining in response at 6 months, %	66.9	67.6	32.4
Remaining in response at 12 months, %	61.3	54.9	18.0

OS: D vs CT (PD-L1 TC ≥25%; PRIMARY ENDPOINT)

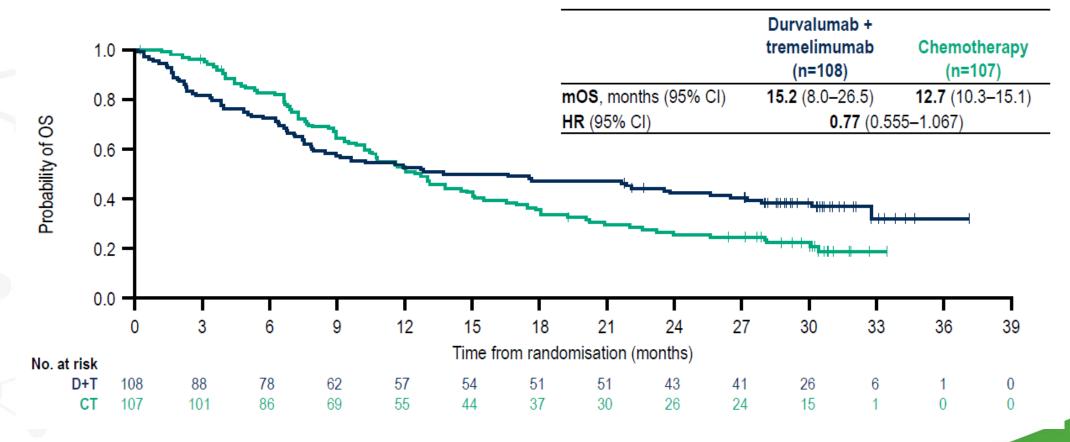

	1.0	_					_				Durvalum (n=163)		Chemot (n=1	nerapy (<mark>62</mark>)
	- 17						E	vents, n (%)		108 (66.3	3)	128 (79.0)
(8.0	Name of Street, or other Persons					n	nOS, mon	ths (95% C	l) 1	6.3 (12.2–2	20.8)	12.9 (10	.5–15.0)
SO		'	4	-			Н	IR (97.549	% CI)		0.	76 (0.56	4–1.019)	
of (0.6			-	_	_	р	-value				0.03	36	
\sim						_								
≣							-		20 20/					
obabilit	0.4 -					-	-		38.3%	-	• • • • • • • • • • • • • • • • • • • •			
Pro							_		38.3%					
	0.4 -							22	38.3%		***************************************	 		
(0.2 -							22			******************	 	H	
(_		_	1	2.7%		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	H	
(0.2 -	3	1 6	1 9	12	15	18	21		27	30	33	H 36	39
(0.0	3	1 6	9	12			1	2.7%		30	33	H 36	3 9
(0.2	3	1 6	1 9	12 93			21	2.7%		30	33	→ 36 0	39 0

	Durvalumab (n=163)	Chemotherapy (n=162)
Received post-discontinuation anticancer therapy, n (%)	73 (44.8)	95 (58.6)
Subsequent immunotherapy	10 (6.1)	64 (39.5)


Sitc

OS: D vs CT (PD-L1 TC ≥50%; EXPLORATORY ANALYSIS)

OS: D+T vs CT (PD-L1 TC ≥25%; PRIMARY ENDPOINT)



Durvalumah -	tremelimumab (n=	163) Chamoti	horany (n=162)
Durvalumap -	- tremelimumap (n=	163) Chemoti	neraby (n=162)

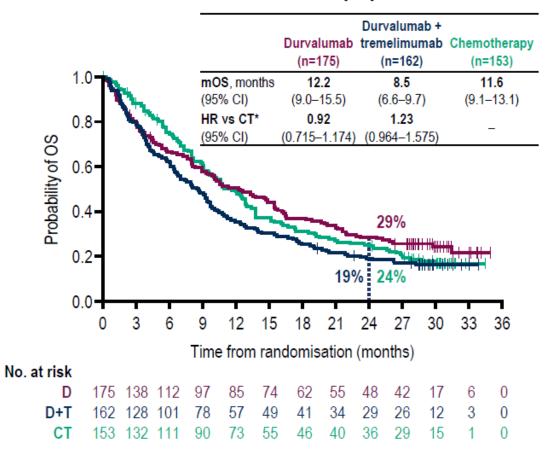
Received post-discontinuation anticancer therapy, n (%)	61 (37.4)	95 (58.6)
Subsequent immunotherapy	5 (3.1)	64 (39.5)

OS: D+T vs CT (PD-L1 TC ≥50%; EXPLORATORY ANALYSIS)

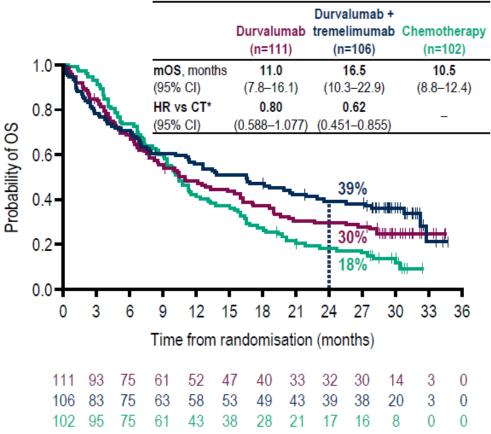
BLOOD TUMOUR MUTATIONAL BURDEN ANALYSIS

- tTMB ≥10 mut/Mb cutoff used to define high TMB in CheckMate 227 for the primary PFS endpoint¹
- This correlated with a bTMB ≥16 mut/Mb cutoff in MYSTIC (overall tTMB vs bTMB correlation: rho=0.6)

TMB evaluable dataset

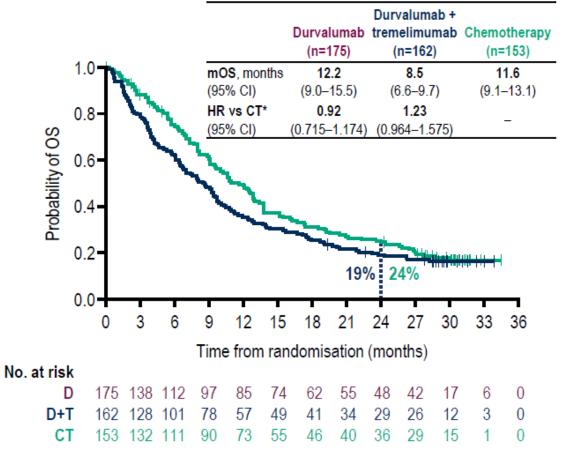

	Durvalumab (n=374)	Durvalumab + tremelimumab (n=372)	Chemotherapy (n=372)
tTMB, n (%)	145 (38.8)	164 (44.1)	151 (40.6)
bTMB, n (%)	286 (76.5)	268 (72.0)	255 (68.5)

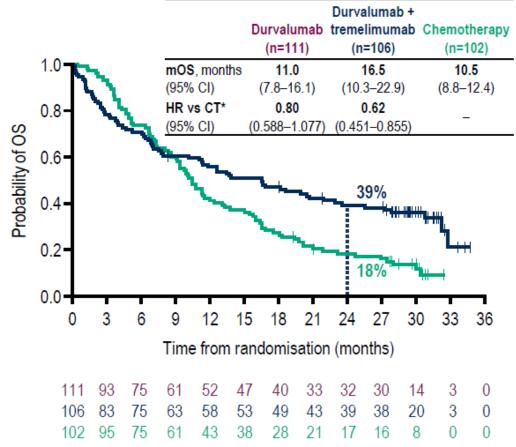
Large bTMB dataset: 809 samples (72.4% of patients)



OS: bTMB SUBGROUPS (EXPLORATORY ANALYSIS)

bTMB <16 mut/Mb population


bTMB ≥16 mut/Mb population



OS: bTMB SUBGROUPS (EXPLORATORY ANALYSIS)

bTMB <16 mut/Mb population

bTMB ≥16 mut/Mb population

CONCLUSIONS

- MYSTIC did not meet primary endpoints of OS and PFS in patients with first-line mNSCLC with PD-L1 TC ≥25%
 - Durvalumab vs chemotherapy: while statistical significance was not achieved, a clinically meaningful improvement in OS was observed
 - HR 0.76 (97.54% CI 0.564–1.019); p=0.036
 - 2-year OS: 38.3% vs 22.7%
 - Activity in line with the anti-PD-1/PD-L1 class in first-line mNSCLC
 - Durvalumab + tremelimumab vs chemotherapy: OS was not improved
 - HR 0.85 (98.77% CI 0.611–1.173); p=0.202
- In this exploratory analysis in a large dataset, high bTMB (≥16 mut/Mb cutoff) was associated with better OS for durvalumab + tremelimumab vs chemotherapy
 - HR 0.62 (95% CI 0.451-0.855); 2-year OS: 39% vs 18%
- Safety and tolerability profiles of durvalumab and durvalumab + tremelimumab were consistent with data from previous trials^{1–7}

Effects of antibiotics and proton pump inhibitors in NSCLC patients treated with atezolizumab or docetaxel

Pooled analysis of the OAK and POPLAR trials

M. Chalabi,¹ A. Cardona,² D. Nagarkar,³ A. Dhawahir Scala,² M. Albert,³ M. Kok,¹ T. B. Powles⁴, F. Herrera⁵ On behalf of the imCORE working group of early career investigators

¹Netherlands Cancer Institute, ²F. Hoffmann-La Roche, ³Genentech, ⁴Barts Cancer Institute, ⁵Ludwig Institute for Cancer Research

The microbiome in anticancer therapies

- Gut microbiota play a key role in mediating tumor responses to both chemotherapy and immune checkpoint inhibition (ICI) in mouse models
- Anticancer treatments and co-medications such as antibiotics (ATB) and proton pump inhibitors (PPI) alter the gut microbiome
- Studies in patients responding to ICI have shown:
 - higher diversity of the gut (but not oral) microbiome at baseline
 - enrichment of particular bacteria species

Do ATB and PPI compromise ICI efficacy?

Multiple reports show ATB use within predefined windows compromises the efficacy of ICI across tumor types

- Melanoma
- NSCLC
- Renal cell cancer
- Urothelial cancer

Derosa et al., Ann Oncol 2018; Do et al., ASCO 2018; Elkrief, in press; Huemer et al., Oncotarget 2018; Kaderbhai et al., Anticancer Res 2017; Lalani et al., ASCO GU 2018, Matson et al., Science 2018; Routy et al., Science 2018; Tinsley et al. ASCO 2018;

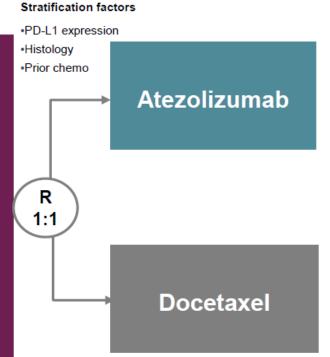
No evidence of PPI compromising clinical benefit of ICI

- NSCLC
- Renal cell cancer
- Urothelial cancer
- Ovarian cancer

Mukherjee et al., J Oncol Pharm Pract 2018; Routy et al., Science 2018

Design and objectives: current study

- Retrospective analysis of patients from POPLAR and OAK studies who received ATB or PPI within 30 days before and after beginning treatment
- Objectives: analyze the effect of ATBs or PPIs on overall survival (OS) and progression-free survival (PFS)
- Statistical analysis using univariate and multivariate Cox models
 - Risk factors with a p-value < 0.15 were further evaluated in a multivariate analysis where the best model was chosen via variable selection


OAK and POPLAR studies: improved survival with atezolizumab vs docetaxel (n=1,512)

Locally Advanced or Metastatic NSCLC

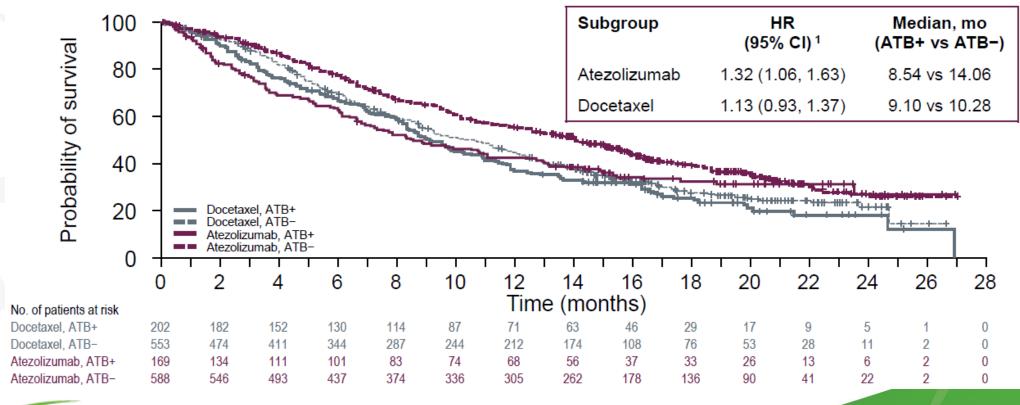
•1–2 prior lines of chemo, at least 1 platinum based

Phase II POPLAR: N=287

Phase III OAK: N=1,225

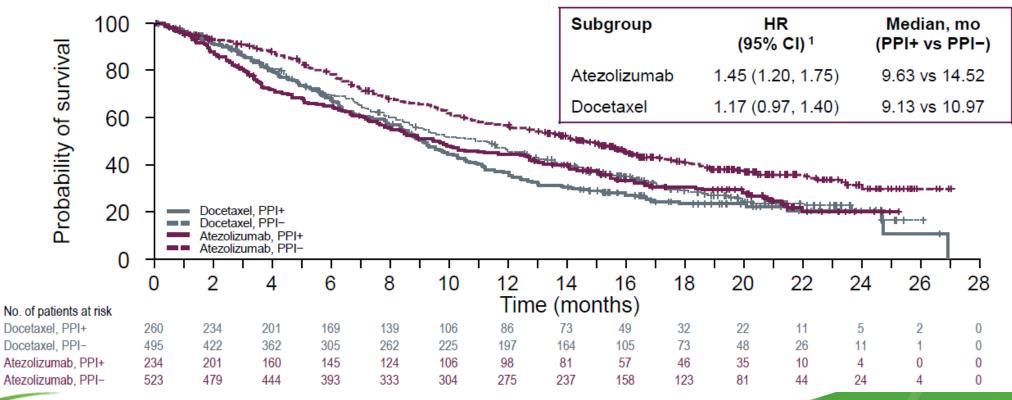
POPLAR: improved survival for atezolizumab vs docetaxel

primary analysis (n=287):¹ *HR 0.73 [95% CI 0.53–0.99]; p=0.04*


OAK: improved survival for atezolizumab vs docetaxel

primary analysis (n=850):² HR 0.73 [95% CI 0.62–0.87]; p<0.01

secondary analysis (n=1,225):^{2,3} HR 0.80 [95% CI 0.70-0.92]; p<0.01



Shorter OS observed in the atezolizumab ATB+ group

Shorter OS observed in the atezolizumab PPI+ group

Conclusions

- Together with previously published data, this retrospective analysis suggests that ATB or PPI use may be associated with lower efficacy of ICI in patients with metastatic NSCLC
- ATB or PPI use may have a prognostic effect regardless of treatment
- Class effect: independent validation of these results needed from previously published RCTs in lung cancer and other tumor types
- Future research on cancer immunotherapy should include the effects of concomitant medications and the role of the microbiota

Fast progression in patients treated with a checkpoint inhibitor vs chemotherapy in OAK, a Phase III trial of atezolizumab vs docetaxel in 2L+ NSCLC

David R. Gandara,¹ Martin Reck,² Stefanie Morris,³ Andres Cardona,³ Diana Mendus⁴, Marcus Ballinger,⁴ Achim Rittmeyer⁵

¹UC Davis Comprehensive Cancer Center, Sacramento, CA, USA; ²German Center for Lung Research, LungenClinic, Grosshansdorf, Germany; ³F. Hoffmann-La Roche Ltd., Basel, Switzerland; ⁴Genentech, Inc., South San Francisco, CA, USA; ⁵Lungenfachklinik Immenhausen, Immenhausen, Germany

Background

- Hyperprogressive disease (HPD) is an uncommon, accelerated-progression pattern reported in patients treated with checkpoint inhibitor monotherapy¹
 - Defined as progressive disease (PD) with ≥ 2-fold increase in tumour growth rate (TGR) from baseline to first evaluation
 - · Assessment requires availability of pre-treatment scans to determine TGR
 - In NSCLC, variably associated with older age (> 65 years), EGFR mutation, MDM2 amplification, and poor overall survival^{1,2}
- Fast progression (FP) is a composite measure that incorporates rapid early disease progression or early death due to PD as a surrogate for the HPD phenomenon
 - Provides a model for trials in which 2 pre-treatment scans are not available
- Phase III OAK study in patients with ≥ 2L NSCLC (n = 850) showed clinically significant overall survival (OS) with atezolizumab vs docetaxel (median OS, 13.8 vs 9.6 months; hazard ratio [HR], 0.73)³

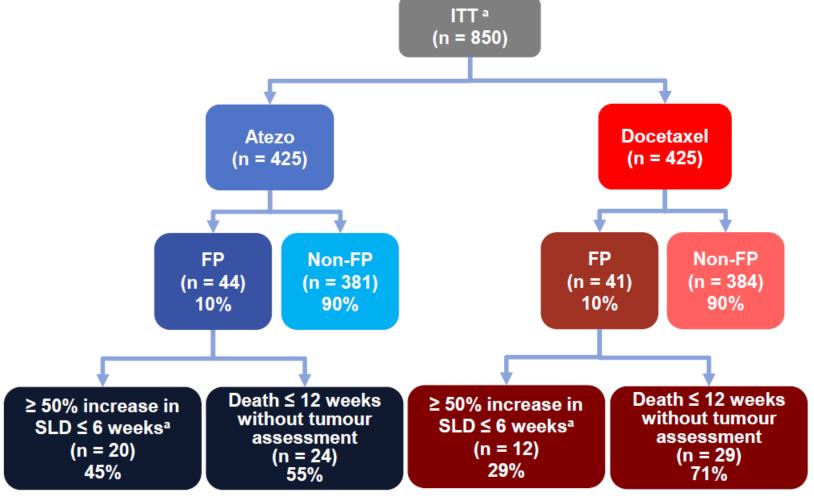
Here we report:

- 1) Occurrence of FP in patients treated with atezolizumab vs docetaxel from the OAK study
- 2) Association of efficacy with baseline factors potentially prognostic for FP, including early failure of the preceding treatment (≤ 6 months of treatment start)

OAK Fast Progressor Post Hoc Analysis

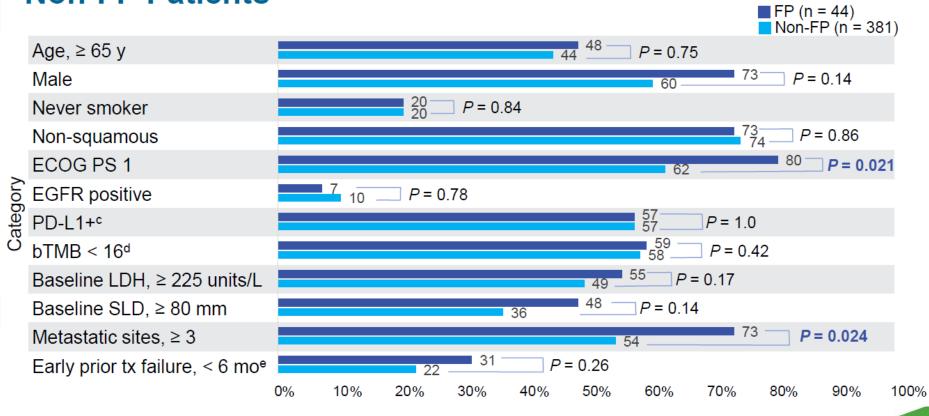
Locally advanced or metastatic NSCLC

- 1-2 prior lines of chemotherapy including ≥ 1 platinumbased therapy
- Any PD-L1 status

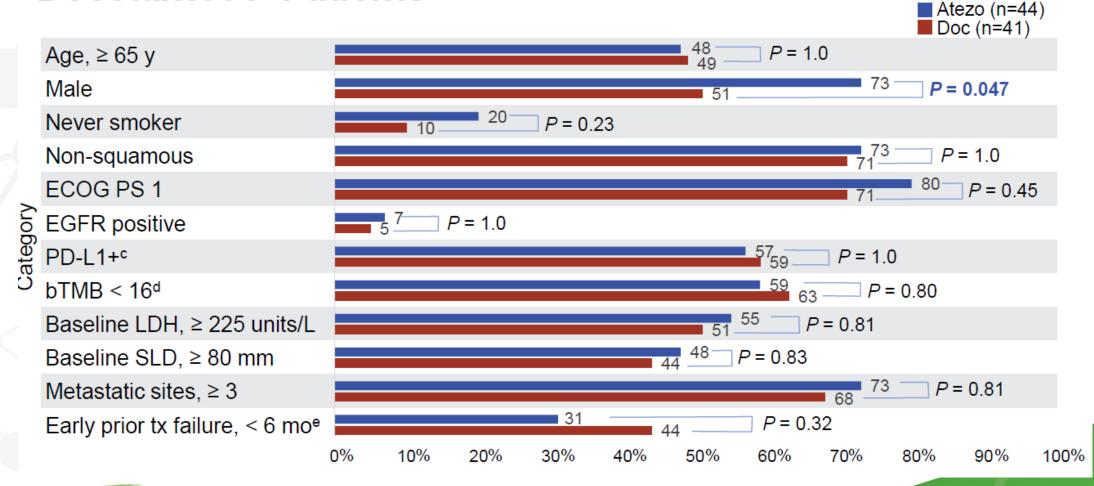

Stratification factors PD-L1 expression Histology Prior chemotherapy regimens R 1:1 Docetaxel PD or loss of clinical benefit Survival follow-up

75 mg/m² IV q3w

- Primary endpoint (first 850 enrolled patients): OS in the intention-to-treat (ITT) population
- Fast progressors were defined as patients treated with atezolizumab or docetaxel and experienced:
 - ≥ 50% increase in the sum of long diameters (SLD) within 6 weeks from baseline or
 - Death due to disease progression within 12 weeks from baseline for patients without a response assessment
- Separately, OS was evaluated according to baseline factors potentially prognostic for FP


OAK Fast Progressor Patient Population

Baseline Factors of Atezolizumab FP and Non-FP Patients^{a,b}



Baseline Factors of Atezolizumab FP and Docetaxel FP Patients^{a,b}

Conclusions

- Similar rates of FP occurred in the atezolizumab and docetaxel arms.
- Characteristics and outcomes of patients with FP were similar for atezolizumab vs docetaxel
 - FP in the atezolizumab arm was associated with ≥ 3 metastatic sites and ECOG PS but not other baseline factors
 - OS was similar for atezolizumab vs docetaxel in patients experiencing radiographic FP
- OS benefit with atezolizumab vs docetaxel was observed in all sub-groups, including those expected to be prognostic for aggressive disease, as well as those factors which were not

Questions

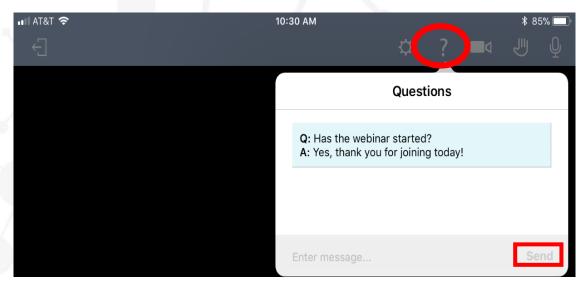
Question 1

- Hyperprogression thought to be due to checkpoint inhibitor immunotherapy has been variably associated with:
 - A. MDM2 amplification
 - B. EGFR mutation
 - C. older age (>65 years)
 - D. All of the above
 - E. None of the above

Question 2

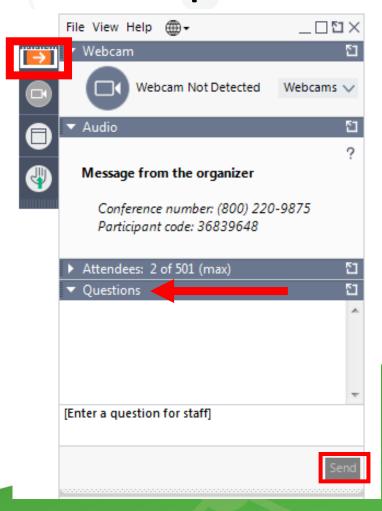
 In the MYSTIC trial, investigators presented tumor mutation burden evaluated through blood samples (bTMB). What was the cut off (mutations/Mb) associated with improved survival of durvalumab/tremelimumab versus chemotherapy:

- A. 10
- B. 15
- C. 16
- D. 20
- E. 25



Question and Answer

To submit a question:


Type your question in the Questions box of your webinar panel.

Mobile View

Desktop View

ACI Webinar Series

SAVE THE DATE!

Thursday, May 23, 2019

3:00-4:00 p.m. CST

Faculty Experts:

Robert Canter, MD, MAS, FACS – *University of California Davis Health System* Robert Ferris, MD, PhD – *UPMC Hillman Cancer Center*

To register, please visit: sitcancer.org/education/aci/online

