Neoadjuvant Therapy with Durvalumab + Tremelimumab in Patients with High-Risk, Cisplatin-Ineligible Muscle-Invasive Urothelial Carcinoma

MDACC 2016-0033 (NCT02812420)

Jianjun Gao (JJ) Gao, MD, PhD

Department of Genitourinary Medical Oncology

The University of Texas MD Anderson Cancer Center, Houston, TX

Disclosures

- Jianjun Gao has served as a consultant/advisor for
 - ARMO Biosciences
 - AstraZeneca
 - CRISPR Therapeutics
 - Jounce
 - Nektar
 - Polaris
 - Pfizer
 - Symphogen

Background

- For muscle invasive bladder cancer, Neoadjuant chemotherapy increases survival.
- Neoadjuant chemotherapy with Gem/Cis and MVAC has pCR rate 20-40%.
- However, about 50% patients are ineligible for cisplatin-based neoadjuant chemotherapy due to: 1) renal failure; 2) neuropathy;
 3) hearing loss; 4) heart failure.

Background

- Bladder cancer:
 - Anti-CTLA-4
 - Ipilimumab: RR-25% (3/12)
 - Anti-PD-L1:
 - Atezolizumab: RR-15% (2nd line); RR-23.5% (1st line)
 - Durvalumab: RR-17% (2nd line)
 - Avelumab: RR-16.1% (2nd line)
 - Anti-PD1:
 - Nivolumab: RR-19.6% (2nd line)
 - Pembrolizumab: RR-21.1% (2nd line); RR-29% (1st line)

Hypothesis

- Anti-CTLA-4 plus anti-PD-L1 will have an acceptable safety profile as neoadjuvant therapy for patients with localized bladder cancer ineligible for cisplatin-based chemotherapy.
- Lead to measurable immunologic changes, with identification of novel biomarkers that can be used for immune monitoring and clinical correlation in the setting of metastatic disease.

Durvalumab/Tremelimumab Trial Schema (NCT02812420)

- Total accrual: 28 patients on cohort 1(Median follow up: 19.2 mos)
- Primary endpoint: Safety
- Secondary endpoints: Biomarker; pathologic T0 rate; RFS, OS

Patient Baseline Characteristics

Characteristics	(N=28)	
Age	•	
Median	71	
Range	24-83	
sex - no. (%)		
Male	20 (71%)	
Female	8 (29%)	
Histology		
UC with squamous cell carcinoma component	2 (7%)	
UC with Micropapillary component	2 (7%)	
UC with small cell component	1 (4%)	
UC with spindle sarcomatoid features	1 (4%)	
Pure UC	22 (78%)	
Clinical Stage at Baseline (%)		
T1 ^a	1 (4%)	
T2	12 (43%)	
Т3	12 (43%)	
T4	3 (11%)	
High risk features (%) [°]		
Exam under anesthesia showing 3-D mass	12 (43%)	
Hydronephrosis	6 (21%)	
Lymphovascular invasion	4 (14%)	
Variant histology	6 (21%)	
T4a	3 (11%)	
High grade upper tract UC	2 (7%)	
Reasons for cisplatin ineligibility (%) ^c		
CrCl per Cockcroft Gault <60 mL/min	18 (64%)	
Cardiac dysfunction	4 (14%)	
Neuropathy	2 (7%)	
Hearing impairment	5 (17%)	
Patients declining chemotherapy	3 (10%)	

Treatment Related Adverse Events

Treatment Related Adverse Events	Any Grade	Grade >/= 3
(N=28)	N (%)	N (%)
Any adverse events	26 (93%)	6 (21%)
Lipase increased	5 (18%)	4 (14%)
Alanine aminotransferase increased	6 (21%)	3 (11%)
Aspartate aminotransferase	6 (21%)	3 (11%)
increased		
Blood bilirubin increased	3 (11%)	2 (7%)
Amylase increased	8 (29%)	1 (4%)
Hyponatremia	4 (14%)	1 (4%)
Colitis	3 (11%)	1 (4%)
Rash	8 (29%)	0
Pruritus	7 (25%)	0
Fatigue	5 (18%)	0
Hyperthyroidism	5 (18%)	0
Anemia	4 (14%)	0
Hyperkalemia	4 (14%)	0
Hypomagnesemia	4 (14%)	0
INR increased	4 (14%)	0
Nausea	4 (14%)	0
Alkaline phos increased	3 (11%)	0
Constipation	3 (11%)	0
Hypoalbuminemia	3 (11%)	0
Hypocalcemia	3 (11%)	0

Clinical to Pathologic Staging Changes

Patient #	Clinical Stage at Baseline	Pathologic Stage
2	cT2	pT0N0
3	cT2	pT0N0
4	cT2	pT4aN0
5	cT4a	р Т0N0
8	cT3b, 3-D mass on EUA	pT0N0
9	cT2	pT4N2
10	cT2	pT1N0
11	cT4a	pT1N0
12	cT2	р Т0N0
13	cT3b, 3-D mass on EUA	pT2aN0
15	cT3b, 3-D mass on EUA	pTaN0
16	cT3b, 3-D mass on EUA	pT2N0
18	cT2	pT3bN1
22	cT2	pT2N0
23	cT3b, 3-D mass on EUA	р Т0N0
24	cT3b, 3-D mass on EUA	pTisN0
25	cT3b, 3-D mass on EUA	pTis & TaN0
31	cT2	pT4aN2
32	cT3b, 3-D mass on EUA	pT2N1
34	cT2	pT2N0
35	cT2	pT2pN1
36	cT3b, 3-D mass on EUA	pT2pN0
37	cT1*	pT0N0

* cT1: diffuse bladder tumors with high grade histology and high-risk feature of micropapillary disease

Pathologic Responses to Durvalumab + Tremelimumab

Nat Med Gao et al. 2020

Durva/Treme Caused Significant Increase of ICOS+CD4 T Cells in Peripheral Blood and Tumor Tissues

Nat Med Gao et al. 2020

Pathologic Responses Did Not Correlate with Specific Mutations

20% ATR 0% 20% BRCA2 0% 20% MSH6 0% MLH3 23% 0% 10% ERCC2 31% 10% BRCA1 0% 10% MDC1 0% 10% PMS2 0% 10% RAD50 0% 10% XRCC2 0% 15% 0% ERCC4 0% XRCC3 15% 0% XRCC5 15% 20% CDK12 8% 10% ATM 8% 20% ATRX 15% 10% BLM 8% 10% BRIP1 8% 0% CHEK1 8% 0% ERCC6 8% 0% 8% FANCA 0% FANCC 8% 10% FANCG 15% 10% NBN 15% PALB2 10% 8% 0% RAD51B 8% 10% RECQL4 8% 10% WRN 8% Splice Site Frame Shift Del Nonsense Mutation Multi Hit Missense Mutation Frame Shift_Ins

0%

0%

0%

23%

31%

0%

0%

0%

0%

0%

15%

15%

15%

8%

8%

15%

8%

8%

8%

8%

8%

8%

15%

15%

8%

8%

8%

8%

Splice_Site
Frame_Shift_Del
Nonsense_Mutation
Multi_Hit
Missense Mutation
Frame Shift Ins

Missense Mutation Nonsense Mutation

Pathologic Responses Did Not Correlate with TMB, Neoantigen or PD-L1

Histology and irAEs Did not Significantly Correspond to Pathologic Responses

Baseline Tumor TLS Density Corresponds to Pathologic Responses, OS and RFS

Nat Med Gao et al. 2020

0

0

Baseline Tumor B Cells, T cells, and TLS Signature Corresponds to Pathologic Responses

Nat Med Gao et al. 2020

- 1. Durvalumab plus tremelimumab have an acceptable safety profile as neoadjuvant therapy for patients with high-risk MIBC ineligible for cisplatin-based chemotherapy.
- 2. Durvalumab plus tremelimumab lead to promising pathologic response rates that can be confirmed in larger trials.
- 3. Correlated data indicate that TLS is a promising biomarker that can be used for clinical correlation in the setting of localized disease.

Acknowledgments

- Genitourinary Oncology: Padmanee Sharma, Omar Alhalabi, Arlene Siefker, Matthew Campbell, John Araujo, Amishi Shah, Pavlos Msouel, Paul Corn, Jianbo Wang, John Papadopoulos, Jianfeng Chen, Sangeeta Goswami, Christopher Logothetis -The GU clinical trial team
- Immunotherapy Platform: James Allison, Shalini Yadav, Jorge Blando, Fei Duan, Sreyashi Basu, Hao Zhao, Ying Wang, Marc Macaluso
- Department of Urology: Neema Navai, Ashish Kamat, Surena Matin, Colin Dinney
- Genomic Medicine: Andy Futreal, John Zhang
- Biostatistics: Rebecca Slack; Yu Shen
- Pathology: Charles Guo

Funding Agencies for JJ Gao:

- MD Anderson Physician Scientist Award
- MD Anderson Faculty Scholar Award
- Khalifa Physician Scientist Award
- Andrew Sabin Family Foundation Award
- Doris Duke Clinical Scientists Award
- Herb Kelleher Family Fund
- The David H. Koch Center for Applied Research of Genitourinary Cancers
- Wendy and Leslie Barnhart Fund
- Patient donors
- AstraZenca/MedImmune
- Patients