Michael T. Lotze

Nick Restifo

William Murphy

Bernie Fox

- Tumor Models :
- Differences with human Not predictive?
 - Bill Murphy
- Clinical trials Difficulties:
 - Mike Lotze
- Important predictor(s) for objective response?
 - Monitor IR in patients receiving combination therapy.. What? How? When?

Preclinical Tumor models to Predict Effective combinations

Dose

Schedule

Sequence

Prioritizing combinations

Threshold

Drug Interactions

Scientific Barriers: Preclinical Tumor models

- Most models do not reflect long-term tumor-bearing state.. 6mo – yr..
- Established how long..
 - Is size enough?
 - Time tumor "on board".
 - Transplantable tumors grow too fast suppression / not sufficient time to induce sufficient IR.
- Transgenic animal model(s) should have..
 - Inflamatory component, inducible --

Predictors: Autoimmunity

- Vitiliego: Human and mouse
- What else to evaluate in preclinical models?
 - Autoantibodies predict better outcome to IFN.
 - Other.. What?
 - Collaborate with autoimmunity researchers?

Caveats when using mouse preclinical cancer models

- 1. Species differences (mouse versus man)
 - a. pharmacokinetics/drug sensitivity
 - b. immune biology
 - c. life span
- 2. Mouse issues
 - a. strain used
 - b. housing conditions (SPF)
 - c. age
- 3. Tumor model
 - a. cell line immunogenicity
 - b. growth kinetics
 - c. routes of administration/orthotopic

	Mouse	Human
Hematopoiesis in spleen	Active into adulthood	Ends before birth
Presence of BALT	Significant	Largely absent in healthy tissue
Neutrophils in periph. blood	10-25%	50-70%
Lymphocytes in periph. blood	75-90%	30-50%
Leukocyte defensins	Expressed on granulocytes	Expressed on monocytes
CD4 on macrophages	Absent	Present
Predominant T cells in skin and mucosa	γ/δ TCR (dendritic epidermal T cells – DETC)	α/β TCR
NK inhibitory Rs for MHCI	Ly49 family (except Ly49 and H)	KIR
NKG2D ligands	H-60, Rae1β	MIC A, MIC B, ULBP

Mestas and Hughes. 2004. Of mice and Not Men: Differences between Mouse and Human Immunology. *Jl.* 172:2731-2738.

	Mouse	Human
Effects of γ_c deficiency	Loss T, NK, B cells	Loss T, NK, but normal B cell numbers
IFN-α promotes Th1 differentiation	No	Yes
Th expression of IL-10	Th2	Th1 and Th2
CD28 expression on T cells	On 100% of CD4+ and CD8+	On 80% CD4+, 50% CD8+
ICOS deficiency	Normal B cell numbers and function, normal IgM levels	B cells immature and severely reduced in number, low IgM
B7-H3 effects on T cells	Inhibits activation	Promotes activation
MUC1 on T cells	Absent	Present

Mestas and Hughes. 2004. Of mice and Not Men: Differences between Mouse and Human Immunology. *JI*. 172:2731-2738.

	Mouse	Human
IL-8, NAP-2, ITAC, MCP-4, HCC-1, HCC-2, MPIF-1, PARC, eotaxin-2/3	Absent	Present
IFN-γ effects in demyelinating disease	Protective in EAE	Exacerbates MS
Constitutive MHCII on EC	Absent	Present
T cell dependence on CD2-ligand interactions	Low	High
CD40 on EC	Absent	Present

- Clinical trials Difficulties: Mike Lotze
 - Having testable hypotheses with solid answer at the end
 - including: suitable biomarkers; problems of accessing the tumor site;
 - endpoints of tumor destruction/death -LDH, HMGB1, S100 molecules, HSPs

- What are properties of effector T cells that mediate tumor regression. TCR affinity, Peforin - other, homing molecules
- What are factors that prevent T cells from working
- What are tumor factors that prevent tumor from being destroyed